Выбери любимый жанр

Принцесса или тигр - Смаллиан Рэймонд М. - Страница 31


Изменить размер шрифта:

31

Гости съехались. После превосходного обеда (его приготовила квартирная хозяйка Крейга миссис Хоффман) разговор зашел о математике.

— Я слышал, вы построили несколько логических машин, — сказал Мак-Каллох. — Интересно было узнать о них поподробнее. Может быть, вы расскажете, как они работают?

— О, это долгий разговор, — отвечал Фергюссон. — К тому же я до сих пор не нашел ответа на один очень важный вопрос, связанный с их работой. Может, вы с Крейгом зайдете как-нибудь ко мне в лабораторию? Тогда я вам обо всем и расскажу. А сегодня я предпочел бы поговорить о ваших машинах. Несколько дней назад я рассказывал Крейгу, что у них обнаружились некоторые свойства, о которых, мне кажется, вы и не подозреваете.

— Что же это за свойства? — спросил Мак-Каллох.

1. — Ну что ж, — сказал Фергюссон, — давайте начнем с конкретного вопроса, относящегося к вашей второй машине. Пусть имеются некие числа X и У, такие, что число X порождает обращение числа У, а У порождает повторение числа X. Можете ли вы найти эти числа?

Крейга и Мак-Каллоха эта задача чрезвычайно заинтересовала, и они тут же засели за ее решение. Однако ни тому, ни другому это не удалось. Решить эту задачу, конечно, можно, и, вероятно, наш честолюбивый читатель не прочь попробовать сделать это сам. Заметим только, что в основе решения лежит один важный принцип (о котором пойдет речь в этой главе); если знать его, то решение задачи оказывается на удивление простым.

2. — Вы меня просто заинтриговали, — заявил Крейг, когда Фергюссон показал им решение. — Я вижу, что ваше решение правильно, но как вам удалось его найти? Вы просто случайно наткнулись на эти числа X и У или действовали по заранее намеченному плану? Мне, например, это кажется прямо каким-то фокусом.

— Вот именно, — вставил Мак-Каллох. — Так, знаете, фокусник в цирке вытаскивает кролика из шляпы!

— Ага, — засмеялся Фергюссон, явно наслаждаясь произведенным эффектом. — Только не одного, а двух кроликов, и при том они еще некоторым образом влияют друг на друга. Это точно, — сказал Крейг. — Но все же мне бы хотелось знать, как вы догадались, каких именно кроликов надо тащить?

— Прекрасный, ну просто замечательный вопрос! — сияя, воскликнул Фергюссон. — А ну-ка — вот вам еще задачка: найти такие числа X и У, чтобы число X порождало повторение числа У, а число У порождало обращение ассоциата X.

— С меня хватит! — воскликнул Мак-Каллох.

— Минуточку, минуточку, — перебил их Крейг. — Я, кажется, что-то начинаю понимать. Не хотите ли вы сказать, Фергюссон, что для любых двух операций, которые может выполнять машина, то есть для любых двух заданных операционных чисел М и N, должны существовать некие числа X и У, характеризующиеся тем, что X порождает M(Y), а У порождает N(X)?

— Вот именно! — воскликнул Фергюссон. — И поэтому мы можем найти, например, такие числа X и У, для которых X порождает двойной ассоциат У, а У порождает повторение обращения X или любые другие комбинации, какие вы захотите.

— Вот так штука! — изумился Мак-Каллох. — Ведь все это время я пытался придумать машину как раз с таким свойством, а она у меня, оказывается, уже есть!

— Безусловно есть, — подтвердил Фергюссон.

— А как вы докажете это свойство? — спросил Мак-Каллох.

— Я бы хотел начать доказывать его постепенно, — ответил Фергюссон. — Собственно говоря, суть дела заключается в ваших правилах 1 и 2. Поэтому сначала позвольте сделать несколько замечаний относительно вашей первой машины — той, в которой используются только эти два правила. Начнем со следующей простой задачи: можно ли, используя правила 1 и 2, найти два различных числа X и У, таких, чтобы число X порождало У, а число У в свою очередь порождало X?

Крейг и Мак-Каллох тут же занялись этой задачей.

— Ну, конечно, — рассмеялся вдруг Крейг. — Это же очевидно вытекает из того, что совсем недавно показы вал мне Мак-Каллох.

А вы можете найти эти числа?

— Теперь, — сказал Фергюссон, — для любого числа А существуют такие числа X и У, что X порождает У, а число У порождает АХ. Если число А нам задано, то можете ли вы найти числа X и У? Например, можете ли вы найти такие X и У, чтобы X порождало У, а У порождало 7X7

— Мы все еще пользуемся только правилами 1 и 2 или уже можно применять правила 3 и 4? — спросил Крейг.

— Вам понадобятся только правила 1 и 2,— ответил Фергюссон.

— Я уже нашел решение! — тут же заявил Крейг.

4. — Интересно, — сказал Мак-Каллох, просмотрев решение Крейга. — А у меня решение другое.

Действительно, в этой задаче существует и второе решение. Можете ли вы его найти?

5. — Ну, а теперь, — сказал Фергюссон, — мы добрались до действительно важного свойства. Так, из одних только правил 1 и 2 следует, что для любых чисел А и В существуют такие числа X и У, при которых X порождает АУ, а У порождает ВХ. Например, существуют такие X и У, что X порождает 7 У, а У порождает 8X. Не можете ли вы найти эти числа?

6. — Из последней задачи, — сказал Фергюссон, — со всей очевидностью следует (правда, из второго принципа Крейга это получается еще более просто), что для любых операционных чисел М и N должны существовать такие числа X и У, при которых X порождает M(Y), а У порождает N(X). Причем это оказывается справедливым не только для данной машины, но и для любой машины, в программу работы которой включены правила 1 и 2. С помощью вашей теперешней машины можно, например, найти такие X и У, при которых число X порождает обращение числа У, а число У порождает ассоциат числа X.

Сумеете ли вы их найти?

7. — Это страшно интересно, — сказал Фергюссону Мак-Каллох, когда они с Крейгом решили последнюю задачу. — Но у меня возник вот какой вопрос: подчиняется ли моя машина «двойному» аналогу второго принципа Крейга? Иначе говоря, если заданы два операционных числа М и N, а также два произвольных числа А и В, то обязательно ли существуют такие числа X и У, при которых X порождает M(AY), а У порождает N(BX)

— Ну, конечно, — подтвердил Фергюссон. — Например, существуют такие числа X и У, при которых число X порождает повторение 7 У, а число У порождает обращение 89X.

Не могли бы вы найти эти числа?

8. — Я подумал еще вот о чем, — сказал Крейг. — Если имеется некоторое операционное число М и произвольное число В, то обязательно ли должны существовать такие числа X и У, при которых X порождает М(Y), а У порождает ВХ? Например, существуют ли такие X и У, при которых число X порождает ассоциат У, а число У порождает число 78 X?

А как думаете вы?

9. — Фактически, — продолжал пояснения Фергюссон, — у нас возможны самые разные комбинации. Так, давая некоторые операционные числа М и N и произвольные числа А и В, всегда можно найти числа X и У, которые отвечают любому из ниже перечисленных условий:

а) X порождает М(АУ) а У порождает N(X);

б) X порождает М(АУ) а У порождает ВХ;

в) X порождает M(Y), а У порождает X;

г) X порождает M(AY), а У порождает X.

Попробуйте доказать эти утверждения.

10. Триплеты и так далее.

— Ну, теперь-то, мне кажется, мы перебрали уже все возможные варианты, — сказал Крейг.

— Да нет, — ответил Фергюссон. — То, что я вам показывал до сих пор, — это еще только начало. А знаете ли вы, например, что существуют три числа X, У и Z, такие, что число X порождает обращение У, число У порождает повторение Z, а число Z порождает ассоциат X?

— Неужели? — удивился Мак-Каллох.

— Именно так, — подтвердил Фергюссон. — Более того, если заданы три произвольных операционных числа М, N и Р, то должны существовать такие числа X, У и Z, при которых X порождает M(Y), Y порождает N(Z), a Z порождает Р(Х).

31
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело