Выбери любимый жанр

Принцесса или тигр - Смаллиан Рэймонд М. - Страница 30


Изменить размер шрифта:

30

Здесь читатель может поинтересоваться, а как же все-таки было найдено само число 43243. Может, с помощью сравнения соответствующих относительных длин? Нет, для доказательства свойств, относящихся к нынешней машине, метод сравнения относительных длин оказывается слишком громоздким. Как будет показано в конце этой главы, решение было найдено именно с помощью принципа Крейга.

3. Одним из решений является число 3432343. Мы предоставляем читателю самому найти число, порождаемое числом 3432343, и убедиться, что оно действительно представляет собой ассоциат обращения числа 3432343. (Это решение также было найдено с помощью принципа Крейга.)

4. Подходит, например, число 53253. (Оно получено опять же с помощью принципа Крейга.)

5. Одно из решений — число 4532453.

6. Другое решение — это число 5432543.

7. Решение очевидно — в том, конечно, случае, если нам известно, что некое число порождает само себя. При этом если X порождает X, то ясно, что 5Х порождает повторение X. Так, например, число 5323 порождает повторение числа 323.

8. Одно из решений — число 5332533. (Опять принцип Крейга!)

9. Одно из решений — число 3532353; оно тоже найдено с помощью принципа Крейга. (Надеюсь, я заинтриговал читателя этим принципом!)

10. 5(5) = 55. [Так как 5(5) — это повторение числа 5.] Поэтому возьмем число 5 в качестве М и число 5 в качестве X. (Ведь я не утверждал, что М и X должны быть разными числами.)

11. 4(4) = 4. [Поскольку 4(4) — это обращение числа 4, которое также равно 4.] Таким образом, М = 4 является одним из решений. (Фактически в качестве решения подойдет любая цепочка четверок.)

12. Возьмем М=3 и А=2. [3(2)=222].

13. 4(6)=6, а 6=4+2, поэтому 4(6)=4+2. Итак, М=4, а Х=2.

14. Одно из решений: М=55, Х=55.

15. Одно из решений: М=4, N=44.

16. Одно из решений: М=5, N=55.

17. Одно из решений: М=5, N=4.

18. Одно из решений: М=3, N=5.

19. Одно из решений: М=55, N=45.

20. Пусть М—любое операционное число. Мы знаем (утверждение 1), что в случае любых чисел Y и Z, если У порождает Z, MY порождает M(Z). Поэтому (принимая MY в качестве Z), если У порождает MY, то MY должно порождать M(MY). Таким образом, если вы брать МУ в качестве X, то число X будет порождать

М(Х). Итак, наша задача сводится к нахождению такого числа У, которое порождает МУ. Но эта задача уже была решена в предыдущей главе (с помощью закона Мак-Каллоха): надо просто взять в качестве У число 32МЗ. Итак, за X мы принимаем число М32МЗ, причем это X будет порождать М(Х). Проверим полученный результат: в самом деле, пусть Х=М32МЗ. Но поскольку число 2МЗ порождает число МЗ, то число 32МЗ порождает число М32МЗ (согласно правилу 2), и, следовательно, число М32МЗ будет порождать М(М32МЗ). Таким образом, действительно X порождает М(Х), где X—число М32МЗ.

Рассмотрим теперь некоторые приложения. Для того чтобы найти некое число X, порождающее повторение X, примем 5 в качестве М; тогда сразу получаем решение (а точнее, одно из решений) — число 53253. Для того чтобы найти число X, порождающее обращение самого себя, положим М = 4; тогда X есть число 43243. Для того чтобы найти число X, которое порождало бы ассоциат обращения X, выберем в качестве М число 34; отсюда возможное решение — число 3432343.

Для решения первой задачи Мак-Каллоха (найти число X, которое порождает повторение обращения ассоциата X) выберем в качестве М число 543 (5 — для получения повторения, 4 — для получения обращения и 3 — для получения ассоциата); решением в данном случае является число 543325433. (Читатель может легко удостовериться непосредственно, что число 543325433 действительно порождает повторение обращения ассоциата числа 543325433.)

Для решения второй задачи Мак-Каллоха (найти число X, которое порождает ассоциат повторения обращения X) возьмем в качестве М число 354; в результате получим решение — число 354323543.

Да, действительно, принцип Крейга великолепно работает в этих ситуациях!

21, 22, 23, 24. Задачи 21, 22 и 23 являются частными случаями задачи 24, поэтому мы начнем прямо с последней из них.

Пусть нам дано операционное число М и произвольное число А, причем мы хотим найти некое число X, которое порождает М(АХ). Вся штука теперь состоит в гом, чтобы найти такое число У, которое не порождает MY, однако порождает AMY. Возьмем в качестве У число 32АМЗ. Поскольку У порождает AMY, тогда MY в соответствии с утверждением 1 должно порождать M(AMY). Значит, если принять за X величину MY, то X будет порождать М(АХ). Но поскольку мы выбрали в качестве У число 32АМЗ, то число X в (данном случае будет равно М32АМЗ. Итак, искомое решение — число вида М32АМЗ.

Попробуем применить этот результат к решению задачи 21. Прежде всего отметим, что число 7X7X— это просто повторение 7X, так что мы ищем некое число X, которое порождает повторение IX—или повторение АХ, если считать А равным 7. Итак, А — это 7, а за М, очевидно, можно принять число 5 (поскольку 5 представляет собой операцию повторения); поэтому решением будет число 532753. (Читатель легко может убедиться сам, что число 532753 действительно порождает повторение числа 7532753.) Для задачи 22 в качестве А возьмем 9, а в качестве М примем 4, тогда решение — число 432943. Для задачи 23 в качестве А выберем 89, а в качестве М — число 3; решением будет 3328933.

25. Да, для любого числа А существует некое число X, которое порождает Х Г, а именно 432/443. (В данной конкретной задаче, для которой А = 67, имеем Г = 76, так что решением будет число 4327643.)

26. При рассмотрении наиболее общего случая самое главное — понять, что ХГ — это обращение ~АХ, и по этому М(ХА) = М4(АХ). Согласно второму принципу Крейга, числом X, порождающим М4(А~Х), является число М432ГМ43 — оно и будет решением дайной задачи. В частном случае, если вместо М взять 5, а вместо А — 67, числом X, порождающим повторение ~Х67, будет число 543276543 (в чем читатель может легко убедиться сам).

Законы Фергюссона

А сейчас мы перейдем к рассказу о еще более интересных событиях, связанных с машинами Мак-Каллоха. Недели две спустя Мак-Каллох получил от Крейга письмо следующего содержания:

Мой дорогой Мак-Каллох!

Я и мой друг Малькольм Фергюссон крайне заинтересовались твоими цифровыми машинами. Кстати, ты случайно не знаком с Фергюссоном? Последнее время он ведет активные исследования в области чистой логики и даже собственноручно построил несколько логических машин. Однако его интересы не ограничиваются этим; так, он весьма интересуется шахматными задачами, относящимися к области так называемого ретроградного анализа. Кроме того, он занимается и чисто комбинаторными задачами, с которыми так успешно справляются твои машины. На прошлой неделе я заглянул к нему в гости и показал все твои задачи — они его очень заинтересовали. Когда через три дня я вновь встретил Фергюссона, он невзначай заметил в разговоре что, по его мнению, обе твои машины обладают некоторыми новыми любопытными свойствами, о которых ты сам как изобретатель, по-видимому, даже не подозреваешь. Выражался он несколько туманно и сказал, что хочет еще поразмыслить обо всем этом.

В следующую пятницу я пригласил Фергюссона пообедать со мной. Не хочешь ли присоединиться к нам? Уверен, что у вас обоих найдется много общих тем для разговора; быть может, мы узнаем, что у него на уме.

В надежде на скорую встречу искренне твой

Л. Крей

Ответ Мак-Каллоха не заставил себя долго ждать:

Дорогой Крейг!

С Малькольмом Фергюссоном я не знаком, но многое слышал о нем от наших общих знакомых. Не учился ли он у известного логика Готлоба Фреге? Насколько мне известно, он занимается некоторыми проблемами, весьма важными для оснований математики, и, конечно, я с удовольствием воспользуюсь возможностью познакомиться с ним лично. Само собой разумеется, мне будет также крайне любопытно узнать его мнение по поводу построенных мною машин. Весьма благодарен тебе за приглашение и с радостью его принимаю.

С глубоким уважением

Н. Мак-Каллох

30
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело