Базы данных: конспект лекций - Коллектив авторов - Страница 5
- Предыдущая
- 5/41
- Следующая
4. Кортежи. Типы кортежей
Понятие кортежа в системах управления базами данных может быть интуитивно найдено уже из предыдущего пункта, когда мы говорили об именованном значении кортежа на различных атрибутах. Итак, кортеж (обозначается t, от англ. tuple – «кортеж») со схемой отношения S определяется как множество именованных значений этого кортежа на всех атрибутах, входящих в данную схему отношений S. Другими словами, атрибуты берутся из области определения кортежа, def(t), т. е.:
t ≡ t(S) = {t(a) | a ∈ def(t) ⊆ S;.
Важно, что одному имени атрибута обязательно должно соответствовать не более одного значения атрибута.
В табличной форме записи отношения кортежем будет любая строка таблицы, т. е.:
Здесь t1(S) = {t(a1), t(a2), t(a3), t(a4)} и t2(S) = {t(a5), t(a6), t(a7), t(a8)} – кортежи.
Кортежи в СУБД различаются по типам в зависимости от своей области определения. Кортежи называются:
1) частичными, если их область определения включается или совпадает со схемой отношения, т. е. def(t) ⊆ S.
Это общий случай в практике баз данных;
2) полными, в том случае если их область определения полностью совпадает, равна схеме отношения, т. е. def(t) = S;
3) неполными, если область определения полностью включается в схему отношений, т. е. def(t) ⊂ S;
4) нигде не определенными, если их область определения равна пустому множеству, т. е. def(t) = ∅.
Поясним на примере. Пусть у нас имеется отношение, заданное следующей таблицей.
Пусть здесь t1 = {10, 20, 30}, t2 = {10, 20, Null}, t3 = {Null, Null, Null}. Тогда легко заметить, что кортеж t1 – полный, так как его область определения def(t1) = { a, b, c} = S.
Кортеж t2 – неполный, def(t2) = { a, b} ⊂ S. И, наконец, кортеж t3 – нигде не определенный, так как его def(t3) = ∅.
Надо заметить, что нигде не определенный кортеж – это пустое множество, тем не менее ассоциируемое со схемой отношений. Иногда нигде не определенный кортеж обозначается: ∅(S). Как мы уже видели в приведенном примере, такой кортеж представляет собой строку таблицы, состоящую только из Null-значений.
Интересно, что сравнимыми, т. е. возможно равными, являются только кортежи с одной и той же схемой отношений. Поэтому, например, два нигде не определенных кортежа с различными схемами отношений не будут равными, как могло ожидаться. Они будут различными так же, как их схемы отношений.
5. Отношения. Типы отношений
И наконец дадим определение отношению, как некой вершине пирамиды, состоящей из всех предыдущих понятий. Итак, отношение (обозначается r, от англ. relation – «отношение») со схемой отношений S определяется как обязательно конечное множество кортежей, имеющих ту же схему отношения S. Таким образом:
r ≡ r(S) = {t(S) | t ∈r};
По аналогии со схемами отношений количество кортежей в отношении называют мощностью отношений и обозначают как мощность множества: |r|.
Отношения, как и кортежи, различаются по типам. Итак, отношения называются:
1) частичными, если для любого входящего в отношение кортежа выполняется следующее условие: [def(t) ⊆ S].
Это (как и с кортежами) общий случай;
2) полными, в том случае если ∀t ∈ r(S) выполняется: [def(t) = S];
3) неполными, если ∃t ∈ r(S) def(t) ⊂ S;
4) нигде не определенными, если ∀t ∈ r(S) [def(t) = ∅].
Обратим отдельное внимание на нигде не определенные отношения. В отличие от кортежей работа с такими отношениями включает в себя небольшую тонкость. Дело в том, что нигде не определенные отношения могут быть двух видов: они могут быть либо пустыми, либо могут содержать единственный нигде не определенный кортеж (такие отношения обозначаются {∅(S)}).
Сравнимыми (по аналогии с кортежами), т. е., возможно равными, являются лишь отношения с одной и той же схемой отношения. Поэтому отношения с различными схемами отношений являются различными.
В табличной форме представления, отношение – это тело таблицы, которому соответствует строка – заголовок столбцов, т. е. буквально – вся таблица, вместе с первой строкой, содержащей заголовки.
Лекция № 4. Реляционная алгебра. Унарные операции
Реляционная алгебра, как нетрудно догадаться, – это особая разновидность алгебры, в которой все операции производятся над реляционными моделями данных, т. е. над отношениями.
В табличных терминах отношение включает в себя строки, столбцы и строку – заголовок столбцов. Поэтому естественными унарными операциями являются операции выбора определенных строк или столбцов, а также смены заголовков столбцов – переименования атрибутов.
1. Унарная операция выборки
Первой унарной операцией, которую мы рассмотрим, является операция выборки – операция выбора строк из таблицы, представляющей отношение, по какому-либо принципу, т. е. выбор строк-кортежей, удовлетворяющих определенному условию или условиям.
Оператор выборки обозначается σ<P>, условие выборки – P<S>, т. е., оператор σ берется всегда с определенным условием на кортежи P, а само условие P записывается зависящим от схемы отношения S. С учетом всего этого сама операция выборки над схемой отношения S применительно к отношению r будет выглядеть следующим образом:
σ<P>r(S) ≡ σ<P>r = {t(S) |t ∈ r & P<S>t} = {t(S) |t ∈ r & IfNull(P<S>t, False};
Результатом этой операции будет новое отношение с той же схемой отношения S, состоящее из тех кортежей t(S) исходного отношения-операнда, которые удовлетворяют условию выборки Pt. Понятно, что для того, чтобы применить какое-то условие к кортежу, необходимо подставить значения атрибутов кортежа вместо имен атрибутов.
Чтобы лучше понять принцип работы этой операции, приведем пример. Пусть дана следующая схема отношения:
S: Сессия (№ зачетной книжки, Фамилия, Предмет, Оценка).
Условие выборки возьмем такое:
P<S> = (Предмет = ‘Информатика’ and Оценка > 3).
Нам необходимо из исходного отношения-операнда выделить те кортежи, в которых содержится информация о студентах, сдавших предмет «Информатика» не ниже, чем на три балла.
Пусть также дан следующий кортеж из этого отношения:
t(S) ∈ r(S): {(№ зачетной книжки: 100), (Фамилия: ‘Иванов’), (Предмет: ‘Базы данных’), (Оценка: 5)};
Применяем наше условие выборки к кортежу t, получаем:
Pt = (‘Базы данных’ = ‘Информатика’ and 5 > 3);
На данном конкретном кортеже условие выборки не выполняется.
А вообще результатом этой конкретной выборки
σ<Предмет = 'Информатика' and Оценка > 3 > Сессия
- Предыдущая
- 5/41
- Следующая