Базы данных: конспект лекций - Коллектив авторов - Страница 4
- Предыдущая
- 4/41
- Следующая
Лекция № 3. Реляционные объекты данных
1. Требования к табличной форме представления отношений
1. Самое первое требование, предъявляемое к табличной форме представления отношений, – это конечность. Работать с бесконечными таблицами, отношениями или любыми другими представлениями и организациями данных неудобно, редко оправдываются затраченные усилия, и, кроме того, подобное направление имеет малое практическое приложение.
Но помимо этого, вполне ожидаемого, существуют и другие требования.
2. Заголовок таблицы, представляющей отношение, должен обязательно состоять из одной строки – заголовка столбцов, причем с уникальными именами. Многоярусных заголовков не допускается. Например, таких:
Все многоярусные заголовки заменяются одноярусными путем подбора подходящих заголовков. В нашем примере таблица после указанных преобразований будет выглядеть следующим образом:
Мы видим, что имя каждого столбца уникально, поэтому их можно как угодно менять местами, т. е. их порядок становится несущественным.
А это очень важно, поскольку является третьим свойством.
3. Порядок строк должен быть несущественным. Однако это требование также не является строго ограничительным, так как можно без труда привести любую таблицу к требуемому виду. Например, можно ввести дополнительный столбец, который будет определять порядок строк. В этом случае от перестановки строк тоже ничего не изменится. Вот пример такой таблицы:
4. В таблице, представляющей отношение, не должно быть строк-дубликатов. Если же в таблице встречаются повторяющиеся строки, это можно легко исправить введением дополнительного столбца, отвечающего за количество дубликатов каждой строки, например:
Следующее свойство также является вполне ожидаемым, потому что лежит в основе всех принципов программирования и проектирования реляционных баз данных.
5. Данные во всех столбцах должны быть одного и того же типа. И кроме того они должны быть простого типа.
Поясним, что такое простой и сложный типы данных.
Простой тип данных – это такой тип, значения данных которого не являются составными, т. е. не содержат составных частей. Таким образом, в столбцах таблицы не должны присутствовать ни списки, ни массивы, ни деревья, ни подобные названным составные объекты.
Такие объекты – составной тип данных – в реляционных системах управления базами данных сами представляются в виде самостоятельных таблиц-отношений.
2. Домены и атрибуты
Домены и атрибуты – базовые понятия в теории создания баз данных и управления ими. Поясним, что же это такое.
Формально, домен атрибута (обозначается dom(a)), где а – некий атрибут, определяется как множество допустимых значений одного и того же типа соответствующего атрибута а. Этот тип должен быть простым, т. е:
dom(a) ⊆ {x | type(x) = type(a)};
Атрибут (обозначается а), в свою очередь, определяется как упорядоченная пара, состоящая из имени атрибута name(a) и домена атрибута dom(a), т. е.:
a = (name(a): dom(a));
В этом определении вместо привычного знака «,» (как в стандартных определениях упорядоченных пар) используется «:». Это делается для того, чтобы подчеркнуть ассоциацию домена атрибута и типа данных атрибута.
Приведем несколько примеров различных атрибутов:
а1 = (Курс: {1, 2, 3, 4, 5});
а2 = (МассаКг: {x | type(x) = real, x 0});
а3 = (ДлинаСм: {x | type(x) = real, x 0});
Заметим, что у атрибутов а2 и а3 домены формально совпадают. Но семантическое значение этих атрибутов различно, ведь сравнивать значения массы и длины бессмысленно. Поэтому домен атрибута ассоциируется не только с типом допустимых значений, но и семантическим значением.
В табличной форме представления отношений атрибут отображается как заголовок столбца таблицы, и при этом домен атрибута не указывается, но подразумевается. Это выглядит следующим образом:
Нетрудно заметить, что здесь каждый из заголовков a1, a2, a3 столбцов таблицы, представляющей какое-то отношение, является отдельным атрибутом.
3. Схемы отношений. Именованные значения кортежей
В теории и практике СУБД понятия схемы отношения и именованного значения кортежа на атрибуте являются базовыми. Приведем их.
Схема отношения (обозначается S) определяется как конечное множество атрибутов с уникальными именами, т. е.:
S = {a | a ∈ S};
В каждой таблице, представляющей отношение, все заголовки столбцов (все атрибуты) объединяются в схему этого отношения.
Количество атрибутов в схеме отношений определяет степень этого отношения и обозначается как мощность множества: |S|.
Схема отношений может ассоциироваться с именем схемы отношений.
В табличной форме представления отношений, как нетрудно заметить, схема отношения – это не что иное, как строка заголовков столбцов.
S = {a1, a2, a3, a4} – схема отношений этой таблицы.
Имя отношения изображается как схематический заголовок таблицы.
В текстовой же форме представления схема отношений может быть представлена как именованный список имен атрибутов, например:
Студенты (№ зачетной книжки, Фамилия, Имя, Отчество, Дата рождения).
Здесь, как и в табличной форме представления, домены атрибутов не указываются, но подразумеваются.
Из определения следует, что схема отношения может быть и пустой (S = ∅). Правда, возможно это только в теории, так как на практике система управления базами данных никогда не допустит создания пустой схемы отношения.
Именованное значение кортежа на атрибуте (обозначается t(a))определяется по аналогии с атрибутом как упорядоченная пара, состоящая из имени атрибута и значения атрибута, т. е.:
t(a) = (name(a) : x), x ∈ dom(a);
Видим, что значение атрибута берется из домена атрибута.
В табличной форме представления отношения каждое именованное значение кортежа на атрибуте – это соответствующая ячейка таблицы:
Здесь t(a1), t(a2), t(a3) – именованные значения кортежа t на атрибутах а1, а2, а3.
Простейшие примеры именованных значений кортежей на атрибутах:
(Курс: 5), (Балл: 5);
Здесь соответственно Курс и Балл – имена двух атрибутов, а 5 – это одно из их значений, взятое из их доменов. Разумеется, хоть эти значения в обоих случаях равны друг другу, семантически они различны, так как множества этих значений в обоих случаях отличаются друг от друга.
- Предыдущая
- 4/41
- Следующая