Выбери любимый жанр

Переключатель. Ускорение метаболизма с помощью интервального голодания, протеиновых циклов и кето - Лоберг Кристин - Страница 5


Изменить размер шрифта:

5

Глава 1

Остров Пасхи и трансплантация органов

Концепция переключателя родилась в моей голове в тот момент, когда я читал статью профессора Стивена Спиндлера из Калифорнийского университета в Риверсайде о том, что ограничение калорийности (ОК) рациона предотвращает развитие рака у мышей[9]. Это была, наверное, моя пятисотая статья в 2013 году на тему ОК, голодания, кетогенеза и долголетия: я был одержим идеей понять, как помочь своим родителям прожить более 100 лет, не став жертвой современных недугов: диабета, сердечно-сосудистых заболеваний и деменции. На глаза попадались стандартные рекомендации: избегать сильно обработанных продуктов, особенно напичканных сахаром, жирами и солью; вести активный образ жизни; не курить; не злоупотреблять алкоголем. Но вместе с тем в недрах научных текстов я открывал для себя немало новой информации, казавшейся обоснованной и убедительной. Может показаться странным, но солидные ученые рассуждали о том, что следует предпочитать одни орехи другим, что употребление слишком большого количества белков может быть опасно для здоровья (причем ряд специфических белков животного происхождения воздействует на организм хуже всех остальных), что дробное питание – не панацея, что некоторые витамины, такие как Е, могут повышать риск развития рака, а выкуривание сигары время от времени, наоборот, способствовать долголетию!

Столкнувшись с такими данными, я захотел копнуть еще глубже и детально разобраться в устройстве нашего организма и его шансах сохранить молодость на клеточном уровне. И вот однажды меня осенило: и собственные исследования, и тонны перелопаченной научной литературы прямо указывали на существование некоего биологического механизма, запускающего один процесс, останавливая при этом другой, и наоборот. Технически, этот переключатель – протеиновый комплекс под названием mTOR, где m – это mechanistic, т. е. в переводе с английского языка «механистический» (ранее под m подразумевали mammalian, т. е. «относящийся к млекопитающим»), а TOR – это аббревиатура target of rapamycin, т. е. «мишень рапамицина». Как упоминалось выше, mTOR присутствует практически в каждой клетке (кроме клеток крови) и либо активирует в ней механизм самоочищения (аутофагию), избавляющий организм от токсичных веществ и канцерогенов, а также сжигающий жировые запасы, либо заставляет организм синтезировать больше белков, максимально запасать энергию (глюкозу и жир) и образовывать новые клетки. (Бывают моменты, когда нам действительно нужно синтезировать больше белков, запасать как можно больше энергии и образовывать новые клетки, но не за счет постоянного отключения механизма клеточного восстановления и самоочищения, см. гл. 9.) Когда эти анаболические процессы не уравновешиваются катаболическими – а при современном образе жизни так и происходит, – они провоцируют развитие различных заболеваний.

Переключатель. Ускорение метаболизма с помощью интервального голодания, протеиновых циклов и кето - i_001.png

За буквой R в аббревиатуре mTOR скрывается, как ранее упоминалось, рапамицин – вещество, производимое бактерией. Чтобы в полной мере понять суть mTOR и представить себе общую картину происходящего в клетке, давайте ненадолго перенесемся в прошлое. Эта детективная история начинается с революционного изобретения – электронного микроскопа.

УВИДЕТЬ НЕВИДИМОЕ

Изобретение в первой половине XX века электронного микроскопа дало толчок к смене многих шаблонов в медицине. Такой возможностью мы во многом обязаны появлению электромагнитных линз. Используя магнитные линзы для фокусировки и направления пучков электронов, длина волны которых составляет 0,00001 длины световых волн, электронный микроскоп способен давать увеличение в 10 миллионов раз. Он позволяет нам увидеть то, что нельзя рассмотреть в обычный микроскоп: бактерии, вирусы и крошечные компоненты клеток. В 1955 году бельгийский ученый из Католического университета Лёвена Кристиан де Дюв и американский ученый из медицинского колледжа Вермонтского университета Алекс Новикофф при помощи электронного микроскопа впервые в истории обнаружили в клетках одномембранные органеллы, способные поглощать и переваривать разные молекулы. Дюв назвал эту органеллу лизосомой, т. е. «разлагающим телом», тем самым описывая ее переваривающие свойства, а в 1974 году получил за свое открытие Нобелевскую премию по физиологии или медицине.

В 1961 году доктор Кейт Портер, пионер в области электронной микроскопии из Рокфеллеровского института в Нью-Йорке, и его ученик Томас Эшфорд использовали электронный микроскоп для изучения клеток печени крысы, в которые был введен глюкагон – синтезируемый поджелудочной железой гормон, помимо прочего, заставляющий печень производить глюкозу и выбрасывать ее в кровоток. Портер и Эшфорд считаются первыми учеными, увидевшими процесс аутофагии, хотя понадобились десятилетия, чтобы понять его суть.

СКАЗ О ДВУХ ГОРМОНАХ

Гормон глюкагон вырабатывается альфа-клетками островков Лангерганса в поджелудочной железе.

Стимулятором секреции глюкагона может быть поступление в организм белковой пищи, низкая концентрация глюкозы в крови (гипогликемия) и физическая деятельность. Ингибирует ее углеводистая пища.

Инсулин производится бета-клетками островков Лангерганса в ответ на поступление в организм пищи, особенно углеводов. Его роль состоит в снижении уровня глюкозы в крови и способствовании ее накоплению в жировых клетках, мышцах, печени и других тканях организма.

Глюкагон – это антагонист инсулина. Он оказывает мощное противодействие активности инсулина, повышая концентрацию глюкозы в крови за счет стимулирования распада гликогена (в форме которого глюкоза хранится в печени, мышцах и жировых клетках) и активации синтеза глюкозы из аминокислот и глицерина в печени. Этот процесс называется глюконеогенезом. Повышая концентрацию глюкозы в крови, глюкагон отвечает за поддержание ее нормального уровня во время голодания и физической активности.

Высокий уровень инсулина – другого гормона поджелудочной железы – в крови сигнализирует о наличии глюкозы, сообщая инсулинозависимым клеткам, что ее можно забрать и сжечь в качестве топлива. Это происходит в клеточных митохондриях. (Как вы узнаете чуть позже, митохондрии – это важные внутриклеточные органеллы, отвечающие за выработку энергии.) Инсулин и глюкагон тесно взаимосвязаны, но противоположны по действию; кто из них вступит в игру, зависит от уровня глюкозы в крови: если он слишком низкий, начинает синтезироваться глюкагон, чтобы стимулировать производство глюкозы; когда уровень глюкозы в крови повышается, поджелудочная железа начинает производить инсулин. При помощи электронного микроскопа Эшфорд и Портер смогли рассмотреть внутри клетки мембраны на разных стадиях разложения. Незадолго до этого их внимание привлекла появившаяся в медицинской литературе информация о том, что глюкагон таким же способом расщепляет протеины. В следующем году, прочитав о немецких ученых, заметивших в поврежденных или голодающих клетках маленькие специализированные структуры под названием «органеллы», которые занимались расщеплением мембран, Дюв придумал термин «аутофагия» для описания процесса образования мембранной структуры, поглощающей и переваривающей другие внутриклеточные компоненты.

И лишь 10 лет спустя другое открытие пролило свет на один из ключевых клеточных механизмов, участвующих в отключении аутофагии, – mTOR. Этим открытием мы обязаны счастливой случайности и почве далекого острова, длина которого составляет всего 24 км, а ширина – 12 км.

ОБНАРУЖЕНИЕ ПЕРЕКЛЮЧАТЕЛЯ
5
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело