Выбери любимый жанр

Эгоистичный ген - Докинз Ричард - Страница 35


Изменить размер шрифта:

35

Наши изящные симметричные вычисления коэффициентов родства придется модифицировать с учетом путаных и сложных взвешиваний, производимых статистиками страховых компаний. Деды и бабки, с одной стороны, и внуки — с другой, в генетическом смысле имеют равные основания проявлять друг к другу альтруизм, поскольку их гены на 1/4 одинаковы. Но поскольку ожидаемая продолжительность жизни внуков больше, гены альтруизма дедов и бабок по отношению к внукам имеют более высокую селективную ценность, чем гены альтруизма внуков по отношению к дедам и бабкам. Вполне возможно, что чистый выигрыш от помощи, оказанной молодому дальнему родственнику, будет выше чистого выигрыша от помощи пожилому близкому родственнику. (Кстати сказать, ожидаемая продолжительность жизни у дедов и бабок вовсе необязательно должна быть меньше, чем у внуков. У видов с высокой смертностью в раннем возрасте возможно обратное соотношение.)

Продолжая «страховочную» аналогию, можно рассматривать индивидуумов как лиц, страхующих жизнь. Данный индивидуум может рискнуть известной частью своего состояния на страховку жизни другого человека. При этом он принимает во внимание коэффициент своего родства с этим человеком, а также его «надежность» в смысле его ожидаемой продолжительности жизни по сравнению со своей собственной. Строго говоря, следовало бы заменить «ожидаемую продолжительность жизни» на «ожидаемую репродуктивность» или еще строже — на «общую способность благоприятствовать собственным генам в течение будущей жизни». В таком случае для эволюции альтруистичного поведения суммарный риск для альтруиста должен быть меньше, чем суммарный выигрыш для реципиента, умноженный на коэффициент родства. Риск и выигрыш следует вычислять упомянутым выше сложным способом, применяемым страховыми обществами.

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления, да еще в спешке [6.6]! Даже великий матбиолог Дж. Холдейн (в опубликованной в 1955 г. работе, где он предвосхитил концепцию Гамильтона, постулировав распространение гена, детерминирующего спасение тонущих родственников) заметил: «…в тех двух случаях, когда я вытаскивал из воды с минимальнейшим риском для себя людей, которые могли бы утонуть, у меня не было никакого времени на подобные вычисления». К счастью, как это хорошо знал Холдейн, предполагать, что машины выживания сознательно производят в уме вычисления, нет необходимости. Совершенно так же, как мы применяем логарифмическую линейку, не сознавая, что мы на самом деле используем логарифмы, животное может быть запрограммировано таким образом, что оно ведет себя, как если бы оно производило сложные вычисления.

Вообразить это не столь уж сложно, как может показаться. Когда человек подбрасывает мяч высоко в воздух и вновь ловит его, он ведет себя так, как если бы он решал систему дифференциальных уравнений, определяющих траекторию мяча. Он может не знать, что такое дифференциальное уравнение, и не стремиться узнать, но это никак не отражается на его искусстве играть с мячом. На каком-то подсознательном уровне происходит что-то, равноценное математическим вычислениям. Точно так же, когда человек принимает трудное решение, предварительно взвесив все «за» и «против» и все последствия своего решения, которые он может вообразить, его действия функционально равноценны вычислению «взвешенной суммы», производимому компьютером.

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски — знаком минус; все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем прежде всего не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (т. е. он содержит, как это совершенно очевидно, 100%-собственных генов), риски и выигрыши для самого себя вообще не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом:

Чистый выигрыш при данном типе поведения = Выигрыш для себя – Риск для себя + 1/2 Выигрыша для брата – 1/2 Риска для брата + 1/2 Выигрыша для другого брата – 1/2 Риска для другого брата + 1/8 выигрыша для двоюродного брата – 1/8 риска для двоюродного брата + 1/2 Выигрыша для ребенка – 1/2 Риска для ребенка + и т. д.

Результатом такого суммирования выигрышей будет число, называемое оценкой чистого выигрыша при данном типе поведения. Затем модельное животное вычисляет эквивалентную сумму для каждого альтернативного типа поведения, имеющегося в его репертуаре. Наконец, оно выбирает и реализует поведение того типа, при котором достигается наивысший чистый выигрыш. Даже если все оценки оказываются со знаком минус, оно выбирает наилучшую форму поведения, т. е. связанную с наименьшим риском. Помните, что любое позитивное действие сопряжено с затратами энергии и времени, которые можно было бы израсходовать на другие дела. Если ничегонеделанье оказывается тем «поведением», при котором достигается наивысший выигрыш, то модельное животное будет бездельничать.

Это в высшей степени упрощенный пример, в данном случае выраженный в форме субъективного монолога, а не компьютерной модели. Предположим, что я животное, нашедшее в лесу место, где растет 8 грибов. Прикинув их питательную ценность и несколько уменьшив оценку ввиду наличия риска, хотя и очень незначительного, что они, возможно, ядовитые, я решил, что каждый гриб «стоит» +6 единиц (единицы — произвольно установленные выигрыши, как в гл. 5). Грибы такие большие, что я мог бы съесть лишь три из них. Должен ли я известить кого-то другого о своей находке? Кто может меня услышать? Мой брат B (коэффициент его родства со мной = 1/2), двоюродный брат C (коэффициент родства = 1/8) и D (он мне, в общем, не родственник; коэффициент его родства со мной выражается такой малой величиной, что ее практически можно приравнять к нулю). Если я промолчу о своей находке, то мой чистый выигрыш составит +6 за каждый из трех съеденных мной грибов, т. е. всего +18. Чтобы оценить чистый выигрыш в том случае, если я объявлю о своей находке, нужно будет произвести некоторые расчеты. Восемь грибов придется разделить поровну на четверых. Выигрыш, который я получу от двух съеденных мной самим грибов, по +6 единиц каждый, составит +12. Но я получу также некоторый выигрыш от того, что мой родной и двоюродный братья съедят по два гриба каждый, поскольку у меня с ними есть общие гены. Мой суммарный выигрыш составит (1x12) + (1/2x12) + (1/8x12) + (0x12) = 19 1/2. Соответствующий чистый выигрыш при эгоистичном поведении был равен +18. Результаты практически совпадают, но приговор ясен. Я должен подать сигнал, что найдена пища; проявленный мной альтруизм в этом случае обернется выигрышем для моих эгоистичных генов.

Я упростил ситуацию, сделав допущение, что индивидуальное животное вычисляет, какой образ действий будет оптимальным для его генов. На самом же деле генофонд пополняется генами, под действием которых тела ведут себя так, как если бы они производили подобные вычисления.

Во всяком случае эти вычисления — лишь весьма предварительное первое приближение к тому, какими они должны быть в идеале. Мы пренебрегли многими факторами, в том числе возрастом производящих эти вычисления индивидуумов. Кроме того, если я перед тем, как обнаружить грибы, плотно поел, чистый выигрыш от оповещения о моей находке будет выше, чем если бы я был голоден. В лучшем из миров возможностям прогрессивного усовершенствования вычислений нет конца. Но реальная жизнь протекает не в лучшем из миров. Мы не можем ожидать, что реальные животные, выбирая оптимальное решение, будут учитывать абсолютно все детали. Путем наблюдений и экспериментов в природных условиях нам предстоит выяснить, сколь близко на самом деле реальные животные подходят к достижению идеального анализа расходов-доходов.

35
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело