Структура реальности - Дойч Дэвид - Страница 64
- Предыдущая
- 64/98
- Следующая
Часто предполагают, что мозг может быть квантовым компьютером и что его интуиция, сознание и способности к решению задач могут зависеть от квантовых вычислений. Возможно, это и так, но я не знаю ни свидетельств, ни убедительных аргументов в пользу этого. Я ставлю на то, что мозг, если его рассматривать как компьютер, является классическим компьютером. Но этот вопрос не имеет никакого отношения к идеям Пенроуза. Пенроуз не доказывает, что мозг — это новый вид универсального компьютера, который отличается от универсального квантового компьютера тем, что имеет больший репертуар вычислений, которые стали возможны только при новой пост-квантовой физике. Он доказывает новую физику, которая не будет поддерживать универсальность вычислений, так что при его новой теории вообще невозможно будет объяснять некоторые действия мозга как вычисления.
Должен признать, что для меня такая теория непостижима. Однако фундаментальные открытия всегда трудно понять до того, как они произойдут. Естественно, трудно оценить теорию Пенроуза, прежде чем он сформулирует ее полностью. Если теория со свойствами, на которые он надеется, в конце концов, вытеснит квантовую теорию, или теорию общей относительности, или и ту, и другую через экспериментальные проверки или предоставив более глубокий уровень объяснений, то каждый разумный человек захочет ее принять. И тогда мы отправимся в путешествие постижения нового мировоззрения, к принятию которого будет вынуждать нас объяснительная структура этой теории. Вероятно, это мировоззрение будет весьма отличным от представленного мной в этой книге. Однако, даже если все это пришло, чтобы уйти, я все равно не могу понять, каким образом можно удовлетворить первоначальную мотивацию теории, которая объясняет нашу способность понимать новые математические доказательства. Все равно останется тот факт, что сейчас, да и во всей истории великие математики обладали различной противоречивой интуицией относительно обоснованности различных методов доказательства. Поэтому, даже если истинно то, что абсолютная физико-математическая реальность поставляет свои истины прямо в наш мозг для создания математической интуиции, математики не всегда способны отличить эту интуицию от другой, ошибочной интуиции и от других, ошибочных идей. К сожалению, нет ни колокольчика, который звонит, ни фонарика, который вспыхивает, когда мы понимаем действительно обоснованное доказательство. Порой мы можем ощутить такую вспышку, в момент «эврики», — и, тем не менее, ошибиться. И даже если бы теория предсказала, что существует некий, не замеченный ранее физический индикатор, сопровождающий истинную интуицию (сейчас это становится в высшей степени невозможным), мы бы определенно нашли его полезным, но это все равно не было бы равносильно доказательству того, что этот индикатор работает. Ничто не способно доказать, что однажды еще лучшая физическая Теория не вытеснит теорию Пенроуза и не откроет, что предложенный индикатор все-таки не был надежным и что существует лучший индикатор. Таким образом, даже если мы сделаем все возможные скидки предложению Пенроуза, если мы вообразим, что оно истинно, и взглянем на мир с его позиций, это все равно не поможет нам объяснить подозрительную определенность знания, которое мы приобретаем, занимаясь математикой.
Я отразил лишь общий смысл аргументов Пенроуза и его оппонентов. Читатель поймет, что, в сущности, я на стороне его оппонентов. Однако даже если признать, что геделианское доказательство Пенроуза не доказывает то, что намеревается доказать, и кажется невероятным, что предложенная им новая физическая теория объясняет то, что намеревается объяснить, Пенроуз, тем не менее, прав, что любое мировоззрение, основанное на существующей концепции научного рационализма, создает задачу для принятых основ математики (или, как выразил бы это Пенроуз, наоборот). Это древняя задача, которую поднял Платон, задача, которая, как показывает Пенроуз, обостряется в свете как теоремы Геделя, так и принципа Тьюринга. Эта задача заключается в следующем: откуда исходит математическая определенность в реальности, состоящей из физики и понимаемой с помощью научных методов? В то время как большинство математиков и специалистов по вычислительной технике принимают определенность математической интуиции как нечто, само собой разумеющееся, они не воспринимают проблему примирения этого факта с научным мировоззрением всерьез. Пенроуз серьезно относится к этой проблеме и предлагает решение. Его предложение представляет постижимый мир в определенном аспекте, отвергает сверхъестественное, признает важность творчества для математики, приписывает объективную реальность как физическому миру, так и абстрактным категориям и включает объединение основ математики и физики. Во всех этих отношениях я на его стороне.
Поскольку попытки Брауэра, Гильберта, Пенроуза и всех остальных решить сложную задачу Платона, видимо, потерпели неудачу, стоит снова взглянуть на мнимое ниспровержение Платоном идеи о том, что математическую истину можно получить с помощью научных методов.
Прежде всего, Платон говорит нам, что, поскольку мы имеем доступ только (скажем) к несовершенным кругам, значит, через них мы не сможем получить знание о совершенных кругах. А почему нет? Точно так же можно было бы сказать, что мы не можем открыть законы движения планет, потому что у нас нет доступа к реальным планетам, а есть доступ только к их изображениям. (Инквизиция это и говорила, и я объяснил, почему она ошибалась). Также можно было бы сказать, что невозможно построить точные станки, потому что первый такой станок пришлось бы строить с помощью неточных станков. Оглянувшись назад, можно увидеть, что такая критика вызвана очень грубым изображением принципа действия науки (подобным индуктивизму), который вряд ли можно считать удивительным, поскольку Платон жил до того, что мы могли бы признать как науку. Если, скажем, единственный способ узнать что-либо о кругах из опыта заключается в том, чтобы исследовать тысячи физических кругов, а потом, из собранных данных, попытаться сделать какой-то вывод об их абстрактных евклидовых двойниках, то Платон уловил суть. Но если мы создадим гипотезу, что реальные круги точно определенным образом похожи на абстрактные, и окажемся правы, то мы определенно можем узнать что-либо об абстрактных кругах, глядя на реальные. В геометрии Евклида часто используют рисунки для точного определения геометрической задачи или ее решения. В таком методе описания существует возможность ошибки, если несовершенство кругов на рисунке оставит впечатление, вводящее в заблуждение, — например, если кажется, что два круга касаются друг друга, хотя на самом деле этого не происходит. Но, поняв отношение между реальными и совершенными кругами, можно аккуратно исключить все подобные ошибки. А не понимая этого отношения, практически невозможно понять геометрию Евклида.
Надежность знания о совершенном круге, которое можно получить из изображения круга, полностью зависит от точности гипотезы о том, что эти круги похожи должным образом. Такая гипотеза в отношении физического объекта (рисунка) эквивалентна физической теории, и ее невозможно знать определенно. Но этот факт (как утверждал Платон) не мешает изучению совершенных кругов из опыта; он делает невозможной определенность. Он не должен расстраивать никого, кто ищет не определенность, а объяснения.
Геометрию Евклида можно абстрактно сформулировать без рисунков. Но использование цифр, букв и математических символов в символическом доказательстве способно породить ничуть не большую определенность, чем рисунок по той же самой причине. Символы — это тоже физические объекты, — скажем, чернильные пятна на бумаге, — которые обозначают абстрактные объекты. И опять мы полностью полагаемся на гипотезу, что физическое поведение символов соответствует поведению обозначаемых ими абстракций. Следовательно, надежность того, что мы узнаем, манипулируя этими символами, полностью зависит от точности наших теорий об их физическом поведении и о поведении наших рук, глаз и т.д., с помощью которых мы манипулируем этими символами и наблюдаем за ними. Обманчивые чернила, из-за которых случайный символ изменил свой внешний вид, когда мы не видели этого, — возможно, под дистанционным управлением какого-то шутника, обладающего практической реализацией высоких технологий, — вскоре введут нас в заблуждение относительно того, что мы «определенно» знаем.
- Предыдущая
- 64/98
- Следующая