Революция в физике - де Бройль Луи - Страница 52
- Предыдущая
- 52/56
- Следующая
Автор этой книги в течение долгого времени ощущал некоторое беспокойство по поводу обязательного применения конфигурационного пространства в квантовой механике: даже сегодня он надеется, что, когда мы сможем заменить наши современные представления о физическом пространстве, о частицах и т д. представлениями, лучше соответствующими действительности, законы волновой механики систем будут выражены в менее искусственной форме. В случае систем, содержащих частицы одинаковой природы, можно избежать обязательного использования абстрактного пространства конфигураций, применив метод вторичного квантования, Этот метод основан на том, что при любых эволюциях такой системы полное число частиц должно оставаться неизменным.
Так или иначе, в настоящее время волновая механика систем формулируется в терминах волн в конфигурационном пространстве, и мы увидим, что ее методы увенчались успехом. Квантование системы заключается в исследовании того, для каких значений полной энергии системы (равной частоте «КСИ»-волны, умноженной на h) существуют в конфигурационном пространстве стационарные «КСИ»-волны, т е. в поисках собственных значений уравнений распространения. Далее, для этих квантованных систем находятся дискретные спектры собственных значений, которым соответствуют собственные функции, образующие полный набор и т д. Таким образом, производится непосредственное обобщение физического объяснения волновой механики.
Интенсивность «КСИ»-волны дает в каждой точке конфигурационного пространства вероятность того, что эксперимент, обнаруживающий частицы системы в данных точках, позволит приписать системе конфигурацию, соответствующую данной точке. Аналогично, парциальная интенсивность компонент спектрального разложения волновой функции по собственным функциям энергии дает вероятности того, что точное измерение энергии даст то или иное собственное значение гамильтониана. Короче говоря, сюда непосредственно переносятся все принципы вероятностной интерпретации. Следует также попутно отметить, что здесь можно определить понятие центра тяжести и что некоторые классические теоремы механики, такие, как теорема Кенига, имеют свои аналоги в волновой механике.
Волновая механика систем, развитая в работах Шредингера, не является релятивистской. Это волновое обобщение ньютоновой, а не эйнштейновой механики систем по той причине, что релятивистская механика систем никогда не будет окончательно создана. Эта неспособность релятивистской механики строго описать движение систем обусловлена несколькими причинами, в частности тем, что теория относительности существенно отвергает все мгновенные воздействия на расстоянии. Релятивистская волновая механика Дирака применима только к изолированным частицам, помещенным в заданное силовое поле: ее обобщение на случай систем представляет собой сложную проблему, далекую еще от окончательного решения.
В п. 4 еще будет идти речь о нескольких замечательных приложениях волновой механики систем. Однако, прежде чем сделать это, мы должны рассмотреть один важный случай, где ярко проявляются некоторые специфические свойства новой механики: случай систем, содержащих частицы одинаковой природы.
2. Системы, состоящие из частиц одинаковой природы. Принцип Паули
Вопрос, который мы собираемся обсудить, всецело связан с важной и совершенно новой идеей, возникающей в квантовой теории в связи с введением в статистическую механику кванта действия.
В атомной физике раньше всегда предполагали, что две частицы одинаковой природы, например два электрона, тождественны. Однако эту тождественность нельзя считать абсолютной, не позволяющей, хотя бы мысленно, различить две частицы одинаковой природы. Так, например, при статистических расчетах два состояния одной и той же системы, в которых лишь переставлены две частицы одинаковой природы, считаются различными. Следовательно, если представить себе систему, образованную электронами, то коллективное состояние системы, в котором первый электрон находится в состоянии a, а второй – в состоянии b, считается отличным от коллективного состояния системы, когда первый электрон находится в состоянии b, а второй – в состоянии a. При этом индивидуальные состояния остальных электронов остаются в обоих случаях одинаковыми. Развитие квантовой статистики привело к полному отрицанию возможности различить две частицы одинаковой природы внутри одной системы. Квантовая статистика считает, что два состояния системы, отличающиеся друг от друга только перестановкой двух частиц одинаковой природы, тождественны и неразличимы.
Перестановка частиц одинаковой природы приводит в квантовой механике систем к очень важным последствиям. Рассмотрим систему, состоящую из частиц одинаковой природы. Пусть «КСИ» – одна из возможных волновых функций системы. Согласно определению, эта волновая функция называется симметричной по отношению к двум частицам, если при перестановке координат двух частиц выражение для «КСИ»-функции не меняется. Наоборот, она называется антисимметричной по отношению к двум частицам, если перестановка координат двух частиц меняет лишь знак «КСИ»-функции. Важно отметить, что в общем случае «КСИ»-функция не будет ни симметричной, ни антисимметричной. Однако взаимозаменяемость частиц одинаковой природы позволяет нам доказать следующую важную теорему: если система состоит из частиц одинаковой природы, то всегда существуют волновые функции, одни симметричные, другие антисимметричные по отношению ко всем парам частиц одинаковой природы.
Будем называть состояние, волновая функция которого симметрична, симметричным состоянием системы, а состояние, волновая функция которого антисимметрична, – антисимметричным состоянием системы. Тот факт, что потенциал взаимодействия симметрично зависит от координат каждой пары частиц, позволяет нам доказать теорему, не менее важную, чем первая: невозможно осуществить переход системы из симметричного состояния в антисимметричное и обратно.
Иными словами, невозможны никакие иные комбинации, в смысле Ритца, кроме как между состояниями одинаковой природы. Отсюда следует, что симметричные состояния, с одной стороны, и антисимметричные, с другой, образуют два совершенно отдельных ансамбля, между которыми невозможны никакие переходы. Таким образом, волновая механика допускает принцип, который утверждает, что для частиц определенного сорта существуют в природе лишь симметричные или лишь антисимметричные состояния, поскольку если в начальный момент времени существовали только состояния одного типа, то они навсегда и останутся такими. Этот принцип не является следствием волновой механики, допускающей любые состояния, однако он ей и не противоречит. Теперь мы должны пояснить, как Паули пришел к предположению о существовании этого принципа по крайней мере для электронов.
При изучении строения атома мы отмечали, что существует насыщение энергетических уровней, и подчеркивали фундаментальную важность этого явления, так как именно оно определяет эволюцию структуры атома в периодической системе элементов и все различия в химических, оптических и магнитных свойствах этих элементов. Мы также говорили о том, что порядок последовательного заполнения уровней при добавлении новых электронов был установлен эмпирически: он задается правилом Стонера, которое вначале теоретически не было подтверждено.
Благодаря правилу Стонера стало известно максимальное число электронов, которое может находиться на каждом энергетическом уровне атома. Пытаясь объяснить эти факты, Паули выдвинул замечательную идею о расщеплении уровней, происходящем в результате того, что два электрона не могут находиться в строго тождественных квантовых состояниях, т е. описываться одними и теми же квантовыми числами. Иными словами, наличие электрона в одном квантовом состоянии запрещает появление в том же состоянии еще одного электрона. Отсюда название принцип запрета, данное этому новому физическому постулату. На языке волновой механики принцип Паули выражается следующим образом: электроны могут находиться только в антисимметричных состояниях.Мы видели, что такое утверждение не противоречит принципам новой механики. Чтобы показать, что обе приведенные формулировки принципа запрета действительно совпадают, предположим, что система содержит два электрона в одном и том же индивидуальном состоянии. Но в соответствии со второй формулировкой это предположение означает, что волновая функция антисимметрична по отношению к этой паре электронов, она должна, следовательно, менять знак при перестановке этих электронов местами. Однако, так как индивидуальные состояния электронов тождественны, то такая перестановка не должна менять волновую функцию.
- Предыдущая
- 52/56
- Следующая