Выбери любимый жанр

Биохимия старения - Канунго М. С. - Страница 18


Изменить размер шрифта:

18

Описанным выше наблюдениям не противоречат данные, согласно которым слияние миобластов сопровождается сильным увеличением активности креатинфосфокиназы (КФК), что указывает на более интенсивную транскрипцию ее мРНК [257, 259, 317а]. Показано, что активность КФК у цыпленка увеличивается в период дифференцировки в 20 раз, и причиной этому служит увеличение количества ММ-изофермента. Отсюда следует, что транскрибируется преимущественно ген М-субъединицы [235]. Другим важным изменением, происходящим во время дифференцировки сердечной мышцы, является полное прекращение синтеза ДНК-полимеразы [86].

Подобные изменения в транскрипционной активности хроматина происходят на стадии эмбриогенеза у амфибий [102] и морских ежей [118]. Качественные изменения наблюдаются и при индуцированной гормонами дифференцировке молочной железы [355]. Механизм, с помощью которого осуществляется дифференциальная экспрессия генов, неизвестен. Вопрос заключается в том, возникают ли изменения в хроматине — структурные и функциональные — после достижения зрелости и ведут ли эти изменения к старению организма. Для того чтобы найти ответ на эти вопросы, многие исследователи изучали разные свойства хроматина в зависимости от возраста.

В ряде работ измеряли температуру плавления (Tm) хроматина из печени и тимуса, и во всех случаях было обнаружено в старческом возрасте увеличение Tm [31,32, 149,208, 274, 296]. С помощью ЭВМ был изучен профиль температуры плавления хроматина; было обнаружено, что гиперхромизм и Tm в старости увеличиваются [297]. Это может объясняться увеличением с возрастом числа ковалентных связей между хромосомными белками и ДНК [147–150]. Данная точка зрения согласуется с тем, что количество белка, которое можно экстрагировать из хроматина с помощью солевого раствора, с возрастом уменьшается [274], а количество одноцепочечных разрывов в ДНК увеличивается [80], так как включение 3Н-тимидина в ДНК с возрастом увеличивается [143, 294, 311]. Показано, что ДНК печени старой мыши (20 мес) более чувствительна к S1-нуклеазе, чем ДНК мыши в возрасте от 1 до 15 мес [81]. При седиментации ДНК из мозга мыши в градиенте щелочной сахарозы образуются четыре полосы для старых животных и одна для молодых, что свидетельствует о деградации ДНК в старческом возрасте в результате одноцепочечных разрывов. Такие разрывы в ДНК могут обеспечивать центры для ее ковалентного связывания с хромосомными белками. Одним из факторов, который, по-видимому, способствует образованию разрывов, является диметилирование цитозина. Сообщается, что небольшая доля (3- 10 %) цитозина ДНК постсинтетически метилируется с образованием 5-метилцитозина [54, 322]. Эта модификация предохраняет данный сайт ДНК от расщепления ферментом рестрикции [37, 128, 304], в частности ферментом Нра II [240, 323]. В результате деметилирования цитозинов эти сайты могут стать восприимчивыми к расщеплению, что приведет к увеличению числа разрывов в ДНК. Известно, что содержание 5-метилцитозина в печени рыб с возрастом уменьшается [358]. Однако показано, что метилирование ДНК, выделенной из полушарий головного мозга крыс, в старости увеличивается [348]. Это может усиливать связь ДНК с гистонами и не только увеличивать Tm хроматина, но и уменьшать его матричную активность. Стабильны ли метильные группы ДНК — неизвестно, но весьма вероятно, что метилирование ДНК осуществляется ферментами, отличными от тех, которые метилируют гистоны.

Изучение гибридизации ДНК — РНК в печени мышей показало, что доля ДНК, которая гибридизуется с уникальными и повторяющимися последовательностями РНК, с возрастом уменьшается [92]. Как отсюда следует, с возрастом уменьшается доля транскрибируемой ДНК, что в свою очередь указывает на увеличение связывания и маскировки ДНК хромосомными белками. С помощью того же метода измерялось число транскрибированных рибосомных генов на гаплоидный геном мыши [126, 127]. В возрасте более 2 лет наблюдалось резкое уменьшение числа транскрибированных генов. Однако у человека подобные изменения не обнаруживаются. Аналогичные методы использовались для количественной оценки процентного содержания транскрибированной сателлитной ДНК в различных тканях мыши [291]. В селезенке, почках и в мозгу изменений не наблюдалось, но в печени с возрастом ее количество увеличивалось.

Несколько исследователей изучали транскрипцию РНК на хроматине в зависимости от возраста. В экспериментах in vitro с использованием срезов печени и мозга было показано, что синтез РНК в этих тканях в старческом возрасте уменьшается [103, 145]. Причиной этого может являться уменьшение количества РНК-полимеразы [51, 239]. Обнаружено, что транскрипционная активность различных тканей в старости уменьшается [274, 296]. Результаты, полученные в опытах in vivo, свидетельствуют о том, что синтез РНК в печени, мозгу, сердце и селезенке крыс в старческом возрасте понижается [181]. С возрастом претерпевают качественные изменения типы синтезируемых РНК, а отношение РНК: белок уменьшается [92]. РНК некоторых типов, синтезируемые в организме в среднем возрасте, в старости исчезают, и появляются молекулы новых типов, которые не синтезируются в репродуктивном периоде. Это напоминает возрастные изменения в наборе изоферментов, например аланинаминотрансферазы и лактатдегидрогеназы (гл. 3).

Содержание гистонов в клетке каждой ткани остается приблизительно постоянным на протяжении всей жизни [71]. В нуклеосомных гистонах печени и селезенки крыс и мышей количественных и качественных изменений не происходит, но изменяются три субфракции гистона Н1 [248, 249]. Так, в старческом возрасте специфически увеличивается количество субфракции гистона Н1, содержащей метионин. Предстоит выяснить, как это влияет на структуру и функции хроматина. Сообщается, что содержание НГБ и РНК в хроматине крыс с возрастом уменьшается [104, 207].

Хотя гистонов всего несколько и они играют структурную роль, изменения в степени их ассоциации с ДНК могут иметь значение как при транскрипции, так и при репликации. Благодаря различным ковалентным модификациям их ассоциация с ДНК может меняться. Канунго и его сотрудники исследовали in vitro зависимость ковалентных модификаций гистонов от возраста и модуляции этих модификаций различными эндогенными факторами. В опытах использовали срезы коры головного мозга крыс разного возраста. Схема этих исследований показала на рис. 2.5. Было обнаружено, что фосфорилирование гистонов полушарий большого мозга с возрастом уменьшается [182]. В частности, резко уменьшается фосфорилирование гистонов Н1 и Н4. Кальций ингибирует фосфорилирование гистонов, особенно гистонов Н1 и Н4. Этот эффект в старческом возрасте уменьшается (рис. 2.6). Эстрадиол стимулирует фосфорилирование гистонов [183], особенно у взрослых животных, но этот эффект в старости исчезает (рис. 2.7). При уменьшении фосфорилирования гистонов может усиливаться их связь с ДНК благодаря уменьшению числа отрицательных зарядов.

Биохимия старения - _22.jpg

Рис. 2.5. Схема проведения in vitro ковалентных модификаций хромосомных белков и модуляции матричной активности хроматина в срезах коры головного мозга крыс

Биохимия старения - _23.jpg

Рис. 2.6. Влияние кальция на включение 32P в гистоны коры головного мозга крыс-самок разного возраста [182].

А. Норма. Б. Добавлен Са2+

Биохимия старения - _24.jpg

Рис. 2.7. Влияние эстрадиола на включение 32P в гистоны коры головного мозга крыс-самок разного возраста [183].

А. Норма. Б. Добавлен эстрадиол

18
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело