Путешествие по Карликании и Аль-Джебре - Левшин Владимир Артурович - Страница 15
- Предыдущая
- 15/50
- Следующая
— Так и останется сто, — сказал Сева.
— Нетрудно было догадаться, — продолжал я. — Ну, а если мы станем делить сто на числа, меньшие, чем единица. Что тогда? Частное будет уменьшаться или ещё больше увеличиваться?
— Увеличиваться, — сказала Таня.
— Конечно. Чем меньше делитель, тем всё больше и больше частное. Разделим 100 на 1/2, получим уже 200, а если разделить 100 на 1/5, то частное будет 500.
— Ну конечно, — сказал Олег, — разделить на 1/5 — это всё равно что умножить на 5.
— Молодец, — похвалил я Олега. — Так вот, если мы будем делить число на одну миллионную, то…
— …это всё равно что умножить это число на миллион, — победоносно закончил Сева.
— Вот и подумайте, — снова сказал я, — нуль маленькое число или большое?
— Нуль меньше любого малого числа, — ответил Олег.
— Что же получится, если разделить сто на самое маленькое число? — снова задал я вопрос.
— То же, что получится, если умножить сто на самое большое число, — ответил Сева.
— Правильно, — подтвердил я. — Фокусник разделил единицу на нуль — появился Великан! И никаких фокусов!
Ребята удовлетворённо вздохнули.
— Вот я вам покажу фокус так фокус! — продолжал я после некоторой паузы. — Как вы думаете, сколько чисел может уместиться в этом спичечном коробке?
— Это смотря как писать, — озабоченно сказал Сева, — крупно или мелко.
— Ну, пусть будет мелко, — решил я великодушно.
— Тогда — много, — ответила Таня.
— Что значит — много?
— Тысяча! — закричал Сева.
— Больше.
— Миллион! — предположила неуверенно Таня.
— Еще больше! — подзадоривал я.
— Ну, это уж сказки! — проворчал недоверчиво Сева.
— Что ж, послушайте мою сказку. Сказку да не сказку. — Я вынул все спички из коробка. — Допустим, что этот коробок разделён на две равные части, ну, хотя бы спичкой. Поместим в одной части число 1.
— Пишите единицу, — деловито предложил Сева и протянул карандаш.
— Нет, — возразил я. — Единица будет воображаемая. Нам, математикам, без воображения нельзя! Итак, в этой половине — единица, а другая пустая.
— Очень неэкономно, — заявил Сева. — Целую половину коробка занимать единицей.
— Ничего, — ответил я, — места хватит. Теперь разделим свободную половину снова пополам. Тоже в воображении, конечно. Можем?
— Можем! — сказали ребята.
— Итак, у нас снова два пустых отделения. В одном из них опять-таки мысленно поместим число 2. А свободное отделение ещё раз разделим пополам. И в одну из этих половинок поместим число 3. Потом снова то же самое. Так и будем каждый раз в одно из свободных отделений помещать по числу: 4, затем 5, 6, 7… 100… 1000 и так далее. И каждый раз будем свободное отделение снова делить пополам.
— Нет, — остановил меня Сева, — тут что-то не то. Как же вы будете делить коробок? Если спичками, они туда не влезут.
— А я буду вместо спичек класть волоски, — ответил я.
— Всё равно, — не сдавался Сева, — можно разделить коробок на пятьсот, на тысячу частей, а потом и волосок не полезет!
— Какая же у тебя бедная фантазия! — покачал я головой. — Сумел же кузнец Левша подковать блоху да ещё на каждом гвоздике расписаться! Ведь ещё совсем недавно не было меньшего деления времени, чем секунда. А теперь учёные научились измерять даже миллиардные доли секунды! Раньше, желая похвалить пряху, говорили, что прядёт она нить с паутинку. Тоньше паутинки ничего и представить не могли. А уж измерить паутинку и вовсе не умели. А теперь измеряют размеры молекул, атомов, электронов… Перед ними паутинка что дуб перед мошкой! Так вот. Допустим, найдётся такой искусный мастер, который сумеет разделить наш коробок на самые-самые малые отделеньица. Далеко ходить не надо: разве воображение не лучший мастер на свете? Итак, мастер работает, отделения становятся всё меньше и меньше, вот уж ни в один микроскоп их нельзя разглядеть! А мастер всё делит и делит. Отделения становятся всё меньше, а числа, помещаемые в них, — всё больше. И чем меньше отделение, тем большее число мы в него помещаем. Будет ли этому конец? Нет, не будет! Ведь делить-то можно без конца, да и больших чисел тоже бесконечно много. Вот и выходит, что в этом коробке собрались все бесконечно малые и все бесконечно большие величины. Карлики и великаны!
— Так вот почему эта страна называется Карликанией! — обрадовался Олег.
— Вещий Олег! — сказала Таня.
Нулики снова шалят
Сказка произвела большое впечатление. Ребята никак не могли успокоиться, без конца обсуждая необычный «фокус».
К счастью, их разглагольствования были прерваны запыхавшейся Четвёркой с бантиком. Она прибежала сказать, что не может нас сейчас сопровождать: нулики так расшалились, что с ними не сладишь. А сегодня её дежурство на Числовой площади. Она тотчас же умчалась. Мы поспешили за ней и вот что увидели. По Числовой площади, обнявшись, прогуливались всевозможные числа. О чём-то шептались Двойка и Тройка, образовав число 23. Рядом шли шеренгой и пели песню шесть первых цифр. Из них получилось большое число — 123 456, сто двадцать три тысячи четыреста пятьдесят шесть…
Между этими солидными, степенными числами шныряли озорники нулики, сбежавшие от своих мам из Десятичного переулка.
Вот один из них, особенно бойкий, подбежал к числу 125 и стал слева от единицы, вот так: 0125. Никто не обратил на него особого внимания, потому что число 125 от этого ни капельки не изменилось. Тогда Нулик перебежал на другой конец числа и стал рядом с Пятёркой. Число мгновенно выросло, как на дрожжах, и стало в десять раз больше: не 125, а 1250!
Так как в этом числе все цифры были молодые девушки, им вовсе не хотелось превращаться в старух. Они прогнали Нулика прочь.
Тогда Нулик придумал новую шалость: снова забежал слева от Единицы и отделил себя от числа 125 запятой! И вот оно превратилось в десятичную дробь: 0,125 — стало в тысячу раз меньше, чем было до сих пор.
Цифры возмутились:
— Как ты смел сделать из нас такое маленькое число! Не хотим мы ни с того ни с сего уменьшаться!
А Нулику это так понравилось, что он позвал ещё двух своих приятелей и втиснул их между Единицей и запятой.
Ой-ой! Теперь число 125 уменьшилось в сто тысяч раз и стало вот таким маленьким: 0,00125!
Между тем Нулик вошёл во вкус этой забавной игры. Он упивался своей силой.
— Подумайте только, — вскричал он радостно, — оказывается, чем больше нуликов встанет сразу после запятой, тем меньше сделается число! Ведь каждый из нас уменьшает его в десять раз!
Только он это сказал, как сразу ещё пять нуликов оттеснили Единицу и встали между ней и своими собратьями.
— Теперь вы уже не сто двадцать пять, — закричали нулики, — а сто двадцать пять десятимиллиардных! Вот: 0,0000000125!
О ужас! Число стало таким маленьким, что без микроскопа и не разглядеть.
Какой интерес разговаривать с невидимкой!
Нулики разочарованно покинули свои места, и — ха-ха! — число 125 снова как ни в чём не бывало степенно разгуливало по площади.
— Ну, погодите, — воинственно сказала Четвёрка с бантиком, — сейчас я вас проучу! Напрасно вы так кичитесь своим могуществом, — обратилась она к нуликам. — Видите, гуляет число 9,1? Встаньте-ка между запятой и Единицей. Посмотрим, намного ли уменьшится от этого число?
— Ого-го-го! — ответил вызывающе Нулик. — Конечно, намного!
Три нулика мигом стали так, как было предложено, и что же?
Число 9,1 превратилось всего-навсего в 9,0001.
Нулики даже захныкали:
— Это обман! Число должно было уменьшиться в тысячу раз!
— Вы не учли, что перед запятой стоит цифра девять, а не нуль! В этих случаях ваша сила невелика. Ставьте после запятой хоть сто нулей, число всё равно будет больше девяти! Так что хвастаться нечего!
- Предыдущая
- 15/50
- Следующая