Волшебный двурог - Бобров Сергей Павлович - Страница 97
- Предыдущая
- 97/124
- Следующая
— А как это теперь делается?
— Ну что ж, давай попробуем одолеть и эту премудрость. Если мы возьмем ту же самую функцию да еще припомним то, как мы рассуждали по вопросу о превращении секущей в касательную в предыдущей схолии, то справиться с этим будет не так уж трудно. Для этого нам необходимо, как ты, вероятно, помнишь, исследовать параболу с точки зрения изменения… Ну-ка, скажи мне: изменения чего?
— Я думаю, — довольно бойко отвечал Илюша, — что речь пойдет об изменении скорости, с которой растет функция.
— Правильно. Итак, приступим к изучению изменения скорости изменения функции. Для этого дадим независимой переменной, то есть иксу, некое приращение, которое мы обозначим через Δх. Здесь Δ — не множитель, а заменяющая слово «приращение» прописная греческая буква «дельта», которая читается, как наше «Д». А читается формула просто: «дельта икс». Приращение это не очень большое, не очень и маленькое, но, в общем, конечное. Теперь поскольку икс, независимая переменная, получил некое приращение (ну, допустим, что икс у нас равнялся двум, а теперь будет два и нуль-нуль-три после запятой), то, так как игрек есть переменная…
— Зависимая! — подсказал проворно Илья.
— … а следовательно, и она должна тоже… Что тоже?
— Тоже получит приращение.
— Ответ достойный. И мы назовем это приращение Δу, то есть «дельта игрек». Когда мы найдем приращения, то возьмем их отношение. Если все это изобразить на чертеже, то легко заметить, что получается тот же самый замечательный характеристический Паскалев прямоугольный треугольник, который ты видел на странице… (не спутай только этот Паскалев треугольник с другим, биномиальным Паскалевым треугольником, о котором шла речь в Схолии Седьмой!
Не забудь, что это характеристический дифференциальный треугольник, введенный впервые Архимедом!). Катетами его будут Δх и Δу, а гипотенузой будет прямая, которая рассечет нашу кривую и которую за это самое люди добрые зовут…
— Секущей, — отвечал мальчик.
— А теперь скажи, каков смысл этого отношения?
— По-моему, это будет тангенс угла α, — сказал Илюша.
— Несомненно. Только я тебя спрашиваю не про то, что это будет, а что это означает.
— Мне кажется, что этот тангенс как-то, может быть, и
— 383 —
грубо, но все же измеряет ту же самую скорость. Я заключаю это из того, что если все построение сдвинуть по абсциссе вправо или влево, не изменяя размеров приращения икса, то наклон секущей по отношению к положительному направлению оси абсцисс, — а следовательно, и тангенс соответствующего угла, — изменится. И изменится в соответствии с изменением скорости роста нашей функции.
— Превосходно, молодой человек! Но это все же еще не совсем точно. Давай-ка вычислим, чему же равно это отношение. Пусть до приращения икс достиг значения, которое мы обозначим просто х, а соответственный игрек — аналогично тоже просто буквой у, и пусть переменные, получив и та и другая свои приращения, получат значения x1 и у1. В таком случае можно написать, что
Δх = x1 — х;
Δy = y1 — y = (18x1 — x12) — (18x — х2),
а следовательно, отношение их будет
Δx / Δy = (18x1 — х12 — 18x + х2) / (x1 — x)
Вот что представляет собой тангенс наклона секущей. Ты был прав, говоря, что он измеряет скорость изменения функции. Но вот на что следует обратить внимание: а хорошо ли он ее измеряет? Ясно, что не очень хорошо, ибо его показания зависят от размера приращения независимой переменной. Это раз. Во-вторых, ясно, что секущая может дать указания на скорость лишь в среднем, на измеряемом промежутке, то есть только в общем, а отнюдь не в тех важнейших подробностях, которые могут понадобиться в исследовании. И вот в силу этих двух особенностей это показание недостаточно. Что же следует сделать и как с ним поступить, дабы его коренным образом улучшить? Для этого мы начнем сближать х1 и х, тогда y1 и у также начнут сближаться. И если мы будем все уменьшать и уменьшать расстояние между х1 и х, то при безграничном уменьшении секущая… Что сделает наша секущая?
— А как ты будешь уменьшать? — спросил в свою очередь Илья, глянув на чертеж.
— Я буду придвигать х1 к х справа налево.
— В таком случае
— 384 —
секущая станет поворачиваться около точки A{15}. И в конце концов она станет не секущей, а касательной.
— Я бы только сказал не «в конце концов», а в пределе. Так! Ну, а теперь посмотрим, что получится с этим уменьшением приращений не на чертеже, а в нашей формуле отношения приращений:
Δx / Δy = (18x1 — х12 — 18x + х2) / (x1 — x)
Дальнейшие преобразования уже несложны:
Δx / Δy = (18x1 — х12 — 18x + х2) / (x1 — x) = [18(x1 — x) — (х12 — х2)] / (x1 — x) =
= [18(x1 — x) — (х1 — х)(х1 + х)] / (x1 — x) = 18 — (х1 + х)
Теперь, если х1 безгранично приближается к х, а у1 тем же порядком приближается к у, то, очевидно, мы уже получаем полное право в пределе не делать отличия между х1 и х, а просто положить их равными друг другу. Тогда правая часть последней формулы превратится в
18 — 2х.
Это и будет искомая производная. А чтобы найти максимум, мы должны приравнять ее нулю, решить получившееся уравнение относительно икса — и все. Отмечу еще, что предел отношения обозначается теперь уже не через отношение дельт, а через отношение латинских d; пишется
dy / dx = 18 — 2х ,
а читается «дэ игрек по дэ икс». Но, конечно, для более сложных функций все это сделать труднее. Дифференциальное исчисление и занимается установлением формул и правил, с помощью которых можно, зная выражение у через х, найти закон «изменения скорости изменения» у, то есть найти выражение для производной dy / dx. Интегральное исчисление, как мы выяснили, занимается обратной задачей.
— Очень хорошо! — воскликнул Илюша. — Теперь еще только один вопрос. Ты обещал рассказать про гору Пюи-де-Дом и Паскаля.
— 385 —
— Хорошо! Это происходило в то самое время, когда европейские мыслители нового времени начали деятельно и успешно бороться со схоластическим (только не путан с нашими схолиями!) мировоззрением. Схоласты старались все доказывать не опытным путем, а при помощи ссылок на авторитеты. Дело доходило до очень смешных, с нашей точки зрения, разговоров. Одни из очень видных схоластических мудрецов, например, утверждал, что чудеса, о которых рассказывают монахи, вещь вполне возможная, и ссылался при этом всерьез на поэмы римского стихотворца Овидия, который просто писал очень красивые и замысловатые сказки в стихах о волшебных превращениях[30]. А наш мудрец все это принял за чистую монету. Если так рассуждали в то время ученые-философы, то можешь себе представить, что делали люди менее образованные! Так вот, в то время единственным авторитетом в области физики признавался Аристотель. И мнения этого «великого стагирита», то есть уроженца города Стагиры, нельзя было оспаривать. Аристотель объяснял явление всасывания, которое наблюдается в насосе, тем, что «природа боится пустоты». Эта странная черта характера природы никого не удивляла, никто и не подумал найти ее причину, и дальше этого объяснения не шли. Но в семнадцатом веке, когда техника уже значительно ушла вперед и, в частности, в связи с развитием горного дела развилась техника водоотливных средств, Торичелли под влиянием Галилея произвел замечательные опыты и неожиданно для всех мудрецов нашел свою знаменитую «торичеллиеву пустоту». Паскаль повторил опыты Торичелли, но с очень важным усложнением; он делал их на разной высоте над уровнем моря, дабы обнаружить различия в давлении атмосферы на разных высотах, вполне объясняющие боязнь пустоты. Это ему удалось в полной мере. По просьбе Паскаля его шурин проделал опыты на горе Пюи-де-Дом, на сравнительно большой высоте. Паскаль так ценил эти опыты на горе Пюи-де-Дом, что придумал себе даже особенный псевдоним «Луи де Монтальт», что обозначает «Луи с Высокой Горы». Это был великий бой ученых с невежеством, и высота Пюи-де-Дом, этот Монтальт Паскаля, осталась в этой битве за нами!
- Предыдущая
- 97/124
- Следующая