Выбери любимый жанр

Мир астрономии. Рассказы о Вселенной, звездах и галактиках - Мухин Лев Михайлович - Страница 43


Изменить размер шрифта:

43

Более точно оно записывается в следующем виде:

L = K(μ4/H)M3,

где K — численный коэффициент, а μ — молекулярный вес. Эта формула в принципе верно отражает наблюдательные факты. Основной вывод состоит в том, что перенос энергии из недр звезды определяется излучением, а «пропускная способность» звезды ее массой. О конвекции мы с вами уже немного говорили, но дело в том, что на главной последовательности полностью конвективных звезд практически нет.

Все просто и хорошо: мы с вами выяснили, какие силы управляют Солнцем, как излучает звезда, причем все это было проделано «на пальцах», не выходя за рамки школьного курса физики. Наверное, у многих читателей сложилось впечатление, что Эддингтон был прав, когда говорил: «Нет ничего проще, чем звезда». Быть может, у некоторых появилось даже легкое чувство обманутых надежд: а где же обещанные тайны, проблемы, загадки? Будут и тайны, и загадки. Они впереди.

Источник энергии

Повнимательнее вглядимся в источник светимости Солнца — термоядерные реакции. Сначала решим простой вопрос. Ведь если идет термоядерная реакция (неважно, по какому конкретному механизму), она резко повышает температуру вещества. Это, в свою очередь, должно обязательно повысить скорость процессов, что чревато для звезды весьма опасной возможностью: уподобиться огромной водородной бомбе, в которой термоядерная реакция носит характер взрыва.

Но Солнце светит стабильно, внутри нашей звезды есть механизмы, регулирующие скорость термоядерного синтеза. Что же это за механизмы?

Да, в общем-то опять школьная физика, все так же формула Клайперона, действующая, правда, в условиях гравитации. По этой формуле, если повысить температуру объема газа, немедленно произойдет его расширение, отчего газ тут же охладится. Вот поэтому-то в Солнце и существует жесткий механизм обратной связи, и термоядерные реакции не могут идти в недрах нашего светила с произвольной скоростью. Их скорость полностью определяется самой структурой Солнца.

Вспомним, что такое ядерные реакции. Ядро атома любого элемента (за исключением водорода) состоит из протонов и нейтронов, связанных между собою сильными взаимодействиями. Ясно, что, если протон или нейтрон сталкивается с ядром атома какого-либо элемента и «застревает» в нем, образуется ядро атома нового элемента и вдобавок высвобождается образовавшийся избыток энергии. Этот избыток уносится обычно какой-либо частицей — гамма-квантом, нейтрино и другими.

Процесс может быть и более сложным. Вновь образовавшееся ядро распадается на осколки (деление). Но все это и есть, собственно говоря, ядерные реакции.

Если мы начнем облучать какое-либо вещество нейтронами, то особых трудностей мы испытывать не будем, поскольку нейтрон не имеет заряда и ничто не мешает ему сколь угодно близко подойти к ядру. С протонами дело обстоит гораздо сложнее. Протон несет положительный заряд, и ему необходимо преодолеть электростатическое отталкивание других протонов в ядре. Сделать это довольно не просто, и поэтому в земных условиях для изучения реакций с этими частицами строят огромные ускорители, которые и сообщают протону необходимую начальную энергию для прохождения потенциального барьера. Если мы хотим заставить провзаимодействовать с каким-либо ядром α-частицу — ядро атома гелия-4, ей необходимо будет сообщить еще большую энергию, чем отдельному протону, поскольку в ее составе их уже два.

Ядерные реакции с протонами для космоса — вещь обычная, так как водород — самый распространенный элемент во всей Вселенной. Таким образом, протоны не представляют дефицита, а роль ускорителей в космосе играют, в частности, недра звезд. Температура там столь велика, что часть протонов приобретает вполне достаточные для начала ядерных реакций скорости. Такие реакции, где для «активирования» протонов используется температура, называются термоядерными.

Каковы эти реакции? Главным образом те же, что вызывают взрыв водородной бомбы, — слияние четырех ядер водорода (протонов) через ряд промежуточных реакций в ядро атома гелия. Это так называемый протон-протонный цикл.

Ядро атома гелия весит чуть меньше, чем четыре протона, и в соответствии со знаменитой формулой Эйнштейна E = mc2 эта разница в массе переходит в энергию, которая и идет на разогрев вещества.

Попробуем провести простые количественные оценки выхода энергии в этой реакции. Четыре протона в атомных единицах весят — 4,03252. Но хорошо известно, что ядро атома гелия в тех же единицах весит 4,00389. Именно эта разница в массах и переходит в энергию: mc2 = E = 1,67×10–24 · 0,02863 · (3 · 1010)2 = 4,3 · 10–5 эрг на одно ядро. Если весь водород Солнца превратится в гелий, то выделится чудовищное количество энергии ~ 1052 эрг. Так как Солнце излучает каждую секунду 4 · 1033 эрг, то топлива в Солнце хватит примерно на 100 миллиардов лет.

Теперь о механизмах термоядерных реакций в звездах.

Протон-протонный цикл начинается с образования дейтерия:

1H + 1H → 2D + e+ + ν + 1,44 МЭВ.

Вообще говоря, «выход» этой реакции очень мал. Даже в недрах звезд, где условия в общем-то благоприятствуют ее прохождению, лишь один из десятков миллиардов протонов имеет возможность превратиться в дейтерий.

Дополнительная трудность для начальной реакции состоит в том, что один из протонов во время акта столкновения должен успеть превратиться в нейтрон. Ведь ядро дейтерия состоит не из двух протонов, а из протона и нейтрона! Выручает то обстоятельство, что число протонов огромно, и поэтому все-таки необходимые условия для некоторых из них выполняются, и начальная реакция «запускает» протон-протонный цикл.

Далее дейтерий соединяется вновь с протоном, образуя изотоп гелия-3:

2D + 1H → 3He + γ + 5,49 МЭВ.

Затем возможны уже три направления ядерных реакций. Главный путь — взаимодействие двух ядер изотопа 3He:

3He + 3He → 4He + 1H + 1H + 12,85 МЭВ.

Все возвращается здесь на круги своя: мы снова имеем два протона, цикл замкнулся, но нам надо запомнить, что в результате цикла появилось ядро атома гелия. Это и есть «столбовая» дорога протон-протонного цикла.

Кроме нее, существуют два побочных пути. Первый состоит во взаимодействии гелия-3 и гелия-4, в результате чего образуется ядро бериллия-7. Ядро бериллия может захватить протон и превратиться в бор-8, бор-8 претерпевает бета-распад:

8B → 7Be + e+ + ν.

Эту реакцию нам надо обязательно запомнить, так как именно с ней связаны наиболее драматические страницы в современной физике Солнца. Радиоактивный бериллий-8 быстро распадается на два ядра «обыкновенного» гелия-4.

Наконец, еще одна «дорожка» протон-протонного цикла состоит в следующем: бериллий-7 может захватить электрон, превратившись после этого в литий-7. А тот, захватив протон, «переходит» в неустойчивый изотоп бериллия-8, судьба которого нам уже известна.

Существует еще один тип ядерных реакций, играющий определенную роль в энергетике Солнца, — углеродно-азотно-кислородный цикл (С – N – О-цикл). Причем его конечный результат, так же как и в протон-протонном цикле, — образование атома гелия из четырех ядер атома водорода.

Здесь происходят очень интересные вещи. Все начинается с того, что ядро углерода захватывает протон (ядро атома водорода) и превращается в радиоактивный азот, который, распадаясь, дает более тяжелый изотоп углерода. Этот изотоп тоже захватывает протон и превращается в обычный азот. Но и азот стремится захватить ядро водорода, тем более что недостатка в водороде внутри Солнца нет.

Поглотив протон, ядро азота превращается в радиоактивный кислород, а тот, распадаясь, — в стабильный изотоп азот-15. Азот-15 опять захватывает протон. Но даже в недрах Солнца жадность наказуема: распухшее ядро азота-15 с лишним протоном не в состоянии удержать захваченное и распадается на исходное ядро атома углерода-12 и ядро атома гелия.

43
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело