Мир астрономии. Рассказы о Вселенной, звездах и галактиках - Мухин Лев Михайлович - Страница 39
- Предыдущая
- 39/66
- Следующая
Считается, что именно такие сгущения, находясь при почти постоянной температуре в 10 тысяч К, и претерпевали дальнейшую фрагментацию. Однако рано или поздно фрагментация должна прекратиться. Не так давно ученик Ф. Хойла, известный астрофизик М. Рис показал, что процесс фрагментации огромного облака идет лишь до определенного предела. На финише процесса фрагменты не могут иметь массу, меньшую, чем одна сотая солнечной массы. Удивительно, что эта величина зависит только от некоторых мировых постоянных (скорости света, постоянной Планка и т. д.).
Таким образом, картина каскадной фрагментации приводит нас к значению наименьших звездных масс, наблюдаемых в Галактике. В этой красивой и простой картине многое еще остается неизученным. В частности, согласно этой схеме можно было бы думать, что все звезды первого поколения должны обязательно иметь небольшие массы. Это, конечно же, не так, поскольку в модели каскадной фрагментации не учитываются сопутствующие сжатию процессы столкновения фрагментов, возникновение вихрей в облаке и т. д.
Вернемся теперь снова к газопылевым комплексам нашей Галактики. По сравнению с областями HI и HII эти облака более плотные и более холодные. Их средняя температура 5–10 К. Типичное облако имеет массу от 100 тысяч до миллиона масс Солнца и размер в 40–50 парсек. Общее их количество в Галактике оценивается величиной 5–10 тысяч.
Какова природа образования таких комплексов? Почему их температура существенно меньше температуры окружающей среды? Здесь центральную роль играют явления неустойчивости в процессах нагрева и охлаждения среды. Именно тепловая неустойчивость и приводит к образованию газо-пылевых комплексов.
Мы привыкли к тому, что давление в газе увеличивается с ростом плотности. Однако в межзвездной среде могут происходить процессы, не подчиняющиеся этому, казалось бы, незыблемому правилу. Что же это за процессы?
Представим себе, что межзвездный газ сначала полностью однороден, а его нагрев, происходящий за счет рентгеновских и ультрафиолетовых квантов, в точности компенсируется охлаждением. Тогда любой объем среды будет находиться в состоянии равновесия. Но будет ли такое равновесие устойчивым?
Чтобы ответить на этот вопрос, давайте посмотрим, как зависят скорости охлаждения и нагрева элемента объема газа от числа частиц в нем. С нагревом все просто. Ясно, что чем больше частиц в единице объема, тем больше столкновений с квантами и тем больше энергии получит выбранный нами объем газа в единицу времени.
Скорость охлаждения тоже зависит от числа частиц в объеме, но охлаждение более чувствительно к числу частиц, чем нагрев. Связано это обстоятельство с тем, что охлаждение происходит при столкновении частиц в нашем объеме, при их собственном взаимодействии. В этом случае частицы теряют энергию, высвечивая ее в виде квантов излучения, уходящих из объема газа. Газ, соответственно, охлаждается. Но, поскольку в процессе отдачи энергии в столкновении участвуют две частицы, а в процессе получения энергии только одна, легко сообразить, что действительно охлаждение происходит гораздо более эффективно.
Ну а теперь мы можем без труда понять, что будет происходить в межзвездном газе, если в каком-то объеме его случайно немного повысилась плотность. В этом случае охлаждение начнет опережать нагрев (оно более чувствительно к числу частиц в единице объема). Следовательно, температура в этом элементе упадет. Разумеется, тут же упадет и давление. В результате окружающая среда еще больше «сожмет» элемент объема, температура упадет еще ниже и т. д. Неустойчивость будет развиваться.
Естественно, этот процесс не может продолжаться бесконечно. В конце концов понижение температуры приведет к уменьшению тепловой энергии атомов в газе и, соответственно, к уменьшению эффективности охлаждения за счет возбуждения атомов при столкновениях. Поэтому рано или поздно установится равновесие нашего элемента с окружающей средой. И оно будет довольно своеобразным.
Кстати говоря, может ли здесь вообще идти речь о равновесии? Ведь температура элемента ниже, чем в окружающей среде.
Это так. Но концентрация частиц в элементе больше, и поэтому давление, которое пропорционально произведению числа частиц в единице объема на температуру, в конце концов выравнивается с давлением окружающей среды. Мы будем иметь, таким образом, равновесие по давлению.
Существуют и другие виды неустойчивости, но мы не будем сейчас на них останавливаться. Тепловая неустойчивость, как показывают оценки, приводит к образованию облаков как раз таких масс и размеров, которые совпадают с наблюдательными данными.
Теперь осталось получить из облака звезду. Для этого, естественно, необходимо, чтобы в облаке начала развиваться гравитационная неустойчивость. Этот вопрос уже обсуждался в предыдущей главе. Поэтому напомним только, что для реализации гравитационной неустойчивости размеры облака должны были быть больше критической джинсовой длины. Для малых облаков в зонах нейтрального водорода это условие не выполняется, а для мощных газопылевых комплексов оно заведомо должно выполняться. Это, кстати говоря, может свидетельствовать о том, что гравитационная неустойчивость, действует и в настоящее время.
В созвездии Ориона есть огромный газопылевой комплекс, получивший название «Молекулярное облако Ориона». Оно находится на расстоянии 500 парсек от Земли и «весит» около 500 солнечных масс. Неподалеку от этого облака расположена группа из четырех горячих звезд, хорошо видимых в небольшой телескоп.
Один из ярчайших инфракрасных источников в туманности Ориона был открыт Е. Бёклином и Д. Нойгебауэром. Он расположен чуть правее центра молекулярного облака. Этот объект, получивший название «В — N объекта», имеет небольшие размеры — всего 200 астрономических единиц. Его температура 600 К, и это, по всей видимости, и есть звезда в стадии рождения.
Нужно помнить, что поскольку ядро В — N объекта находится внутри мощной пылевой оболочки, мы можем наблюдать лишь наружные части этого объекта. Ряд наблюдений привел к выводу, что пыль окружает очень молодую горячую звезду спектрального класса В, в которой только что зажглись термоядерные реакции. Лишь поглощение света этой звезды пылью мешает нам ее видеть. Поглощение очень сильное, свет ослабляется в 1020 раз!
Облако в Орионе не единственный пример рождения звезд в наше время. Наличие поблизости от облака четырех ярких звезд — подтверждение идеи о том, что звезды рождаются скоплениями, ассоциациями, причем начало этого процесса — сжатие большого газопылевого комплекса. Затем по мере увеличения плотности отдельные его участки могут начать «независимую жизнь», и комплекс фрагментирует на отдельные куски, каждый из которых дает начало жизни отдельной звезды. Эта качественная картина не исключает возможности образования одиночных звезд.
А сейчас попробуем повнимательней разобраться, почему все-таки из холодного облака при сжатии должна образоваться горячая звезда. Возьмем, к примеру, наше Солнце.
Уже сотни лет назад на Зондских островах и в особенности на Калимантане, туземцы умели добывать огонь при помощи устройства, позже получившего название пневматической зажигалки.
Что это такое? В деревянном цилиндре высверливалось отверстие небольшого диаметра, в котором могла перемещаться палочка, а на конце ее прикреплялся кусочек трута. Зазор между стенками отверстия и палочкой очень маленький. Когда палочку вставляли в отверстие и быстро опускали, трут загорался.
Почему? Да потому, что воздух, находящийся внутри, сжимался, а энергия сжатия превращалась в тепло. Кстати, на этом же принципе превращении энергии — сжатия газа в теплоту — работают дизельные двигатели. Здесь есть еще один тонкий момент. Чтобы получить достаточно высокую температуру, палочку нужно двигать быстро, иначе тепло успевало рассеяться.
Законы физики одинаковы и для пневматической зажигалки малайцев, и для двигателя Дизеля, и для огромного межзвездного облака. Вот почему при сжатии облако начнет нагреваться. Вот почему возможно образование горячей звезды из холодного облака. Ну а энергия сжатия облака во многие миллиарды раз больше, чем во всех дизельных двигателях земного шара.
- Предыдущая
- 39/66
- Следующая