Нестандартные задачи по математике в 4 классе - Левитас Герман Григорьевич - Страница 3
- Предыдущая
- 3/16
- Следующая
Ответ: 9617181920.
б) Чтобы число было наименьшим, нужно сделать его старшие цифры наименьшими. Первой сделаем цифру 1, второй — 0, вычеркнув девять цифр: 1011121314151617181920. Сделать третьей цифрой 0 нам не удастся, не удастся вообще использовать нуль не в качестве последней цифры. Поэтому используем единицы в качестве следующих семи цифр
Ответ: 1011111110.
Задача 17. Известно, что а + b = 70. Чему равно (а — 3) + b?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 67.
Задача 18. Эту фигуру:
нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды. Из какой точки можно начать обводку?
Попытка обвести фигуру, начиная, например, с точки А, не приведет к цели. Начав с точки В или точки С, мы можем решить задачу. Все дело в том, что из точки В ведут три пути и из точки С — тоже три. Если выйти из точки А, то точку В придется проходить так: войти в нее по первому пути, выйти по второму, войти по третьему, и уже не выйти из нее, так как больше путей нет, а дважды проходить один и тот же путь нельзя. То есть, если начать из точки А, то в точке В нужно завершить обход фигуры. То же самое можно сказать и о точке С: ее тоже нельзя пройти, и если начать движение из точки А, то заканчивается обход в точке С. Однако мы не можем завершить обход в двух разных точках: в В и С.
Если же начать путь из точки В, то можно завершить его в точке С. А если начать путь из точки С, то можно завершить его в точке В.
Ответ: Из точки В или из точки С.
Задача 19. Друзья при встрече обменялись рукопожатиями. Рукопожатий было 15. Сколько было друзей?
Решение осуществим подбором. Если бы друзей было двое, то рукопожатие было бы всего одно. Если бы их было трое, то рукопожатий было бы три, как это видно из рисунка:
Если друзей четверо, то из второго рисунка видно, что рукопожатий было бы 6:
А если их шестеро, то рукопожатий 15:
Если друзей пятеро, то рукопожатий 10:
Ответ: 6.
Задача 20. Известно, что а + b = 24. Чему равно (а + 7) + (b — 2)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 29.
21 - 30
Задача 21. В левом нижнем углу шахматной доски (на поле a1) стоит ладья. Два игрока по очереди ходят ею на любое число полей вправо или вверх. Побеждает тот, кто попадет ладьей в правый верхний угол доски (на поле h8). Тебе разрешается начать игру или предоставить партнеру право первого хода. Как ты будешь играть?
Суть игры в том, чтобы ходить ладьей на диагональ a1-h8. Если один игрок сделает это, то другой обязательно уйдет с этой диагонали. И рано или поздно игрок, ставящий ладью на эту диагональ, поставит ее на поле h8, то есть выиграет.
Ответ: Нужно предоставить первый ход партнеру и каждым своим ходом возвращать ладью на диагональ a1-h8.
Отметим, что очень желательно организовать эту игру. Шахматы для этого иметь необязательно, а вот доску, разлинованную в клетку, иметь полезно. На такой доске мгновенно рисуется шахматная доска и отмечаются точками положения ладьи после каждого хода.
Задача 22. У Милы вчетверо больше кукол, чем у Лены, а у Лены на 12 кукол меньше, чем у Милы. Сколько кукол у Милы?
Арифметическое решение подсказывается рисунком:
Сразу видно, что у Милы 16 кукол, а у Лены их 4.
Алгебраическое решение начинаем с записи знака равенства:
=
Но что чему равно в данной задаче? Может быть, что-то равно 12? Дописываем:
= 12.
Многие догадаются, что двенадцати равна разность числа кукол Милы и Лены:
(число кукол Милы) — (число кукол Лены) = 12.
Получилось уравнение с двумя неизвестными. Выразим эти неизвестные через один и тот же х. Обозначать через х ту величину, о которой спрашивается в задаче, было бы неудобно: у Милы кукол больше, чем у Лены, и пришлось бы х делить на 4. Поэтому обозначим через х число кукол Лены: х — число кукол у Лены. Получается, что
(число кукол Милы) — х = 12.
Теперь уже многие догадаются, что число кукол Милы равно 4х, и уравнение примет вид:
4х — х = 12.
Ответ: 16.
Задача 23. В клетке сидят две змеи одинаковой толщины. Одна из них длинная, другая — короткая. Придумайте такой лаз из клетки, чтобы короткая змея могла через него выбраться из клетки, а длинная — не могла.
Ответ: Лаз должен пересекать сам себя, имея форму петли. Тогда короткая змея пролезет через него, а длинная запрёт сама себя.
Задача 24. Разгадай ребус:
Последовательность решения может быть такой:
Ответ: 234785 · 3215 — 754833775.
Задача 25. Эту фигуру:
нужно обвести карандашом, не отрывая его от бумаги и не проводя никакую линию дважды. Из какой точки можно начать обводку?
Начинать можно из точки, в которой сходится нечетное число путей.
Ответ: Из точки А или из точки D.
Задача 26. Известно, что а + b = 14. Чему равно (а + 7) + (b — 7)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 14.
Задача 27. Бригада из пяти плотников и одного столяра выполнила работу. Плотники получили за нее по 200 рублей, а столяр — на 30 рублей больше среднего заработка бригады. Сколько получил за работу столяр?
Конечно, можно решить эту задачу с помощью уравнения:
Но гораздо лучше эту задачу оживить таким, например, рассказом.
Пятеро плотников и один столяр выполнили работу по остеклению большого балкона. Когда они показали работу хозяину, он остался очень доволен и дал им за это деньги. Работники сосчитали деньги и увидели, что сумма делится на шесть. Они разделили деньги поровну. Но тут один из плотников сказал: «Так несправедливо. Столяр выполнил более важную работу, чем мы, плотники. Так что нужно и денег дать ему больше. Дадим ему больше на 30 рублей». Все согласились. Плотники собрали 30 рублей и отдали их столяру. После этого нужно попросить пересказать всю эту историю. А затем пусть дети ответят на вопросы:
- Предыдущая
- 3/16
- Следующая