Вечное состязание Ахилла и черепахи - Борхес Хорхе Луис - Страница 2
- Предыдущая
- 2/2
Единице соответствует 2
3 – " – 4
5 – " – 6 и т. д.
Доказательство столь же безупречно, сколь примитивно, но оно не отличается от следующего доказательства того, что для числа 3018 существует столько же множителей, сколько есть чисел.
Единице соответствует 3018
2 – " – 6036
3 – " – 9054
4 – " – 12 072 и т. д.
То же можно утверждать о степенях этого числа, с тем различием, что дистанция между ними будет все более возрастать.
Единице соответствует 3 018
2 – " – 3 018? (9 108 324)
3 – " – 3 018? и так далее.
Гениальное признание этих фактов вдохновило философа на формулу, что бесконечное множество – например, ряд натуральных чисел – есть множество, члены которого могут в свой черед раздваиваться на бесконечные ряды. На подобных высоких широтах счисления часть не менее обильна, чем целое: точное количество точек, имеющихся во Вселенной, равно тому, которое имеется в одном метре Вселенной, или в одном дециметре, или в самой огромной траектории звезды. Задача Ахилла оказывается включенной в этот героический ответ. Каждое место, занятое черепахой, сохраняет пропорциональное отношение с местом, которое занято Ахиллом, и скрупулезного соответствия, точка к точке, обоих симметричных рядов достаточно, чтобы объявить их равными. Не остается никакого периодического остатка начальной форы, данной черепахе: конечная точка ее пути, конечная точка пути Ахилла и конечная точка времени состязания – математически совпадают. Таково решение Рассела. Не оспаривая техническое превосходство противника, Джеймс все же предпочитает не соглашаться. Заявления Рассела (пишет Джеймс) уклоняются от истинной трудности, касающейся категории бесконечного «растущее», а не категории «постоянное», – Рассел имеет в виду только последнюю, предполагая, что путь уже пройден и что задача состоит в том, чтобы уравновесить обе траектории. Между тем обе они не уточняются: определение пути каждого из бегунов или просто промежутка затраченного времени связано с трудностью достижения некой цели, когда каждый предыдущий интервал возникает раз за разом и перекрывает путь («Some problems of Philosophy», 1911, стр. 181).
Я подошел к концу моей заметки, но не наших размышлений. Парадокс Зенона Элейского, как указал Джеймс, покушается не только на реальность пространства, но и на самую неуязвимую и тонкую реальность времени. Добавлю, что жизнь в физическом теле, неподвижное пребывание, текучесть каждого дня жизни восстают против такой опасности. Подобный беспорядок вносится посредством одного слова «бесконечное», слова (а за ним и понятия), внушающего тревогу, которое мы отважно произносим и которое, превратившись в мысль, взрывается и убивает ее (существуют другие древние кары за общение со столь коварным словом – есть китайская легенда о скипетре императоров Лянь, который укорачивается с каждым новым правителем наполовину: изувеченный многими династиями, скипетр этот существует и поныне). Мое мнение, после приведенных мною столь квалифицированных суждений, подвержено двойному риску показаться дерзким и тривиальным. Все же я его выскажу: парадокс Зенона неопровержим, разве что мы признаем идеальную природу пространства и времени. Так признаем же идеализм, признаем же конкретное увеличение воспринимаемого, и мы избегнем головокружительного умножения бездн этого парадокса.
Поколебать нашу концепцию Вселенной из-за этой крохи греческого невежества? – спросит мой читатель.
- Предыдущая
- 2/2