Выбери любимый жанр

Доктрина циклов - Борхес Хорхе Луис - Страница 1


Изменить размер шрифта:

1

Хорхе Луис Борхес

Доктрина циклов

I

Эта доктрина – именуемая одним из ее последних создателей Вечным Возвращением – формулируется так:

Число атомов, составляющих универсум, бесконечно, но имеет предел и, как таковое, способно на ограниченное (и также бесконечное) число сочетаний. За бесконечный период число вероятных сочетаний будет исчерпано, и вселенная повторится. Ты вновь выйдешь из чрева, вновь окрепнет твоя кость, вновь в твои, те же руки попадет та же самая страница, и ты вновь все переживешь, вплоть до своей немыслимой смерти.

Таков принятый порядок ее аргументации – от нудного вступления до грандиозной и жуткой развязки. Обычно ее приписывают Ницше [1].

Прежде чем ее оспорить – не знаю, способен ли я на такое предприятие, – следует хотя бы приблизительно уразуметь безумные цифры, с ней связанные. Начнем с атома. Диаметр атома водорода определяется (без допуска) одной стотысячной сантиметра. Столь головокружительно малая величина не означает, что он неделим, – наоборот, Резерфорд представляет его по модели Солнечной системы, как образованный центральным ядром и вращающимся электроном, в сто тысяч раз меньшим, чем целый атом. Однако оставим в покое это ядро и этот электрон и представим себе скромную вселенную, состоящую из десяти атомов. (Речь, понятное дело, идет об обычной экспериментальной вселенной – незримой, ибо о ней не подозревает микроскоп; невесомой, ибо ее не взвесить ни на каких весах.) Также допустим – в полном согласии с догадкой Ницше, – что число изменений этой вселенной соответствует числу способов, которыми могут расположиться десять атомов, ломая первоначальное расположение. Сколько различных состояний претерпит этот мир до Вечного Возвращения? Решение задачи простое: достаточно перемножить числа 1x2x3x4x5x6x7x8x9x10; нудное занятие, дающее цифру 3 628 800. Ежели бесконечно малая частица способна на такие изменения, остается мало, а то и вовсе никакой веры в однообразие космоса. Я взял десять атомов; чтобы получить два грамма водорода, понадобится миллиард миллиардов. Подсчитать вероятные изменения в этих двух граммах – то есть перемножить все числа, предшествующие миллиарду миллиардов, – занятие, значительно превышающее мое человеческое терпение.

Не уверен, убежден ли, наконец, читатель; я – нет. Невинное и беззаботное расточительство огромных чисел, несомненно, вызывает особое наслаждение, свойственное всем преувеличениям, однако Возвращение остается более или менее Вечным, хотя и более отдаленным. Ницше отпарировал бы так: «Вращающиеся электроны Резерфорда для меня новость, впрочем, как и мысль – столь непозволительная для филолога – о возможности деления атома. Однако я никогда не отрицал, что материя превращается многократно; я говорил лишь о том, что не бесконечно». Столь правдоподобная реплика Фридриха Заратустры заставляет вспомнить Георга Кантора и его смелую теорию множеств.

Кантор разрушает основания Ницшевого тезиса. Он утверждает абсолютную бесконечность точек вселенной, даже в одном метре вселенной или в отрезке этого метра. Счет для него – всего только способ сравнения двух множеств. К примеру, если бы первенцев всех домов Египта, кроме тех. у кого на дверях дома красная метка, умертвил Ангел, очевидно, что осталось бы столько, сколько было красных меток, без необходимости их пересчитывать. Множество целых чисел бесконечно, и все же есть возможность доказать, что четных столько же, сколько нечетных.

1 соответствует 2,

3 -» – 4,

5 -» – 6 и так далее.

Доказательство столь же безупречное, сколь и тривиальное, однако оно ничем не отличается от следующего – о равенстве чисел, кратных трем тысячам восемнадцати, всем числам натурального ряда, включая само число три тысячи восемнадцать и ему кратные.

1 соответствует 3018,

2 -» – 6036,

3 -» – 9054,

4 -» – 12 072.

То же самое можно утверждать о его степенях, тем более что они подтверждаются по мере нарастания.

1 соответствует 3018,

2 -» – 3018 \ или 9 108 324,

3 и так далее.

Гениальное признание этих соответствий вдохновило теорему, что бесконечное множество – допустим, весь натуральный ряд – представляет собой такое множество, члены которого, в свою очередь, могут подразделяться на бесконечные ряды. (Точнее, избегая всякой двусмысленности: бесконечное множество – это множество, равное любому из своих подмножеств.) На высоких широтах счисления часть не меньше целого: точное число точек, имеющихся во вселенной, равно их числу в метре, дециметре либо на самой изогнутой из планетарных траекторий. Натуральный ряд чисел прекрасно упорядочен: образующие его члены последовательны; 28 предшествует 29 и последует 27. Ряд точек пространства (либо мгновений времени) не упорядочить подобным образом; ни одно число не имеет непосредственно ему последующего или предшествующего. Это все равно что располагать дроби в зависимости от их величины. Какую дробь поставить вслед за 1/2? Не 51/100, поскольку 101/200 ближе; не 101/200, поскольку ближе будет 201/400; не 201/400, поскольку ближе будет… По Георгу Кантору, то же самое происходит и с точками. Мы всегда можем вставить бесконечное число других. Безусловно, следует избегать нисходящих величин. Каждая точка «уже» есть конец бесконечного дробления.

Пересечение прекрасных игр Кантора с прекрасными игра ш Заратустры для Заратустры смертельно. Если универсум состоит из бесконечного числа членов, он необходимо даст бесконечное число комбинаций – и требование Возвращения отпадает. Остается только его вероятность, равная нулю.

II

Осенью 1883 года Ницше пишет [2]: «Медлительный паук, ползущий к лунному свету, и этот лунный свет, и мы с тобой, беседующие у дверей, беседующие о вечном, – разве мы все уже не совпадали в прошлом? И разве не пройдем снова долгий путь, долгий трепетный путь, и разве нам не идти по нему целую вечность? Так я говорил, и говорил все тише, ибо меня пугали мои мысли и домыслы». Эвдемий. интерпретатор Аристотеля, за три века до Христа пишет: «Если верить пифагорейцам, те же самые вещи в точности повторятся, и ты снова будешь со мной, и я повторю это учение, и моя рука будет вращать эту палку, и так далее со всем остальным». В космологии стоиков «Зевс питается миром»: универсум периодически пожирается породившим его огнем и возрождается из пепла, дабы повторилась та же история. Вновь отбирают зерна, дающие всходы, вновь воплощаются камни, деревья и люди, даже труды и дни [3], ведь и для греков имя существительное немыслимо без какой-либо телесности. Вновь мечи и герои, вновь подробные ночи бессонницы…

Как и прочие гипотезы школы Портика, гипотеза о всеобщей периодичности проходит закалку временем и в виде термина «апокатастасис» входит в Евангелие (Деяния Апостолов, 3: 21), хотя и с неясными намерениями. В двенадцатой главе своего «Civitas Dei» [4] святой Августин посвящает несколько глав опровержению столь мерзкой доктрины. Эти (лежащие передо мной) главы слишком запутаны для краткого изложения, однако священнический гнев автора, похоже, вызван двумя поводами: первый из них – грандиозная тщета подобной цели; второй – насмешка над Логосом, умирающим на кресте, как испытатель на показательных испытаниях. От частого повторения прощания и самоубийства теряют смысл; то же самое думал Августин о Распятии. Поэтому он яростно отвергает воззрения стоиков и пифагорейцев. Последние полагали, что разум Господа не способен уразуметь бесконечности; именно извечное круговращение мирового процесса сопутствует его изучению и помогает Господу свыкнуться с ним. Святой Августин подтрунивает над бессмыслицей их революций и утверждает, что Иисус – это прямой путь, позволяющий избегнуть циклических лабиринтов подобной лжи.

вернуться

1

В философской поэме «Так говорил Заратустра» (1883 – 1884) Ницше называет своего героя «Учителем вечного возвращения» и призывает его «возвестить это учение» (Ч. III. Гл. «Выздоравливающий», 2. (Ницше Ф. Сочинения: В 2 i. M., 1990. T. 2. С. 160 – 161).

вернуться

2

«Веселая наука» (1882). Кн. IV. § 341 (Ницше Ф. Сочинения: В 2 т. Т. 1. С. 660).

вернуться

3

Аллюзия на одноименную земледельческую поэму Гесиода.

вернуться

4

«Града Божьего» (лат.)

1
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело