Том 27. Поэзия чисел. Прекрасное и математика - Дуран Антонио - Страница 24
- Предыдущая
- 24/34
- Следующая
Харди жил исключительно математикой и ради математики и был ведущим английским математиком с 1910-х годов и до начала Второй мировой войны. Для него математика была сродни соревнованию: он стремился стать первым, кто решил ту или иную сложную задачу. Харди был автором свыше 300 статей и И книг, и его научное творчество охватывало почти все разделы анализа и теории чисел.
Занятия математикой для Харди имели преимущественно эстетический характер. Как он писал в «Апологии математика», «красота служит первым критерием: в мире нет места безобразной математике».
Харди считал, что красота — единственное, что наделяло математику ценностью, а его жизнь — смыслом: «По любым практическим меркам ценность моей математической жизни равна нулю, а вне математики она, так или иначе, тривиальна. У меня есть лишь один шанс избежать вердикта полной тривиальности — если будет признано, что я создал нечто такое, что заслуживает быть созданным. […] Смысл моей жизни или жизни кого-нибудь еще, кто был математиком в том же смысле, в каком был математиком я, заключается в следующем: я внес нечто свое в сокровищницу знания и помог другим сделать то же, и это „нечто" обладало ценностью, которая отличалась только величиной, но никак не сущностью, от творений великих математиков или любых других художников, больших и малых, которые оставили после себя нерукотворные памятники»[10].
Упорство, с которым Харди настаивал на бесполезности «истинной» математики, часто считается еще одним проявлением его экстравагантного характера. Его провокационные строки: «Настоящая математика не оказывает влияния на войну. Никому еще не удалось обнаружить ни одну военную или имеющую отношение к войне задачу, которой служила бы теория чисел или теория относительности, и маловероятно, что кому-нибудь удастся обнаружить нечто подобное, на сколько бы лет мы ни заглядывали в будущее», — были написаны почти в то же самое время, когда в США начинался проект «Манхэттен», имевший целью создание атомной бомбы. Ирония судьбы: в энциклопедии «Британника» в статье о Харди самому математику уделено меньше места, чем закону Харди — Вайнберга. В энциклопедии отмечается: «Харди не считал этот закон особенно ценным, однако он имеет определяющее значение при решении множества задач генетики, в том числе задачи о распределении Rh в зависимости от группы крови и гемолитических болезней».
Однако для меня беззастенчивые похвалы бесполезности математики были не просто проявлением сумасбродства Харди: он в своей манере заявлял, что в вопросах эстетики был последователем Канта.
Эстетическое удовольствие, по-видимому, имеет иную природу, нежели другие удовольствия, теснее связанные с нашим животным происхождением. Так, удовольствие, которое чувствовал доисторический человек, видя разукрашенную глиняную чашку, не могло сравниться с удовольствием, которое он чувствовал, когда утолял голод или жажду из этой чашки. Аналогично, сексуальное удовольствие и тяга к удобствам также отличаются от удовольствия, которое мы испытываем, когда слушаем Второй фортепианный концерт Рахманинова. Согласно Канту, разница между эстетическим удовольствием и другими происходит от того, что последние возникают при удовлетворении какой-либо необходимости, следовательно, мы заинтересованы в них; удовольствие, вызванное восприятием художественного произведения, напротив, не подразумевает никакой полезности. Человек, утверждал Кант, единственное животное, способное к эстетическим суждениям: «Вкус есть способность судить о предмете или о способе представления на основании удовольствия или неудовольствия, свободного от всякого интереса». Именно эта «свобода от всякого интереса» — важнейшая характеристика любого произведения искусства: искусство, как писал Кант в «Критике способности суждения», есть «целесообразность без цели».
Поэтому Харди восхвалял бесполезность математики не из экстравагантности — следуя теории Канта об эстетике, он отстаивал точку зрения, согласно которой математика — больше искусство, чем наука.
Это доказательство эстетической ценности математики, а следовательно, ее бесполезности, повсеместно присутствует в «Апологии математика». Так как далее именно на примере этого эссе мы проясним, какие свойства математических идей наделяют их эстетической ценностью, в завершение этого раздела мы приведем несколько слов о том, что переживал Харди, когда работал над этим произведением.
Обложка английского издания «Апологии математика».
Страсть Харди к математике в итоге поглотила его. В конце жизни, когда у него уже не было сил заниматься математикой, он чувствовал себя угнетенным и попытался покончить жизнь самоубийством. Именно на этом последнем этапе своей жизни, прожив шесть десятилетий, он создал «Апологию математика», полную горечи, которую он чувствовал. «"Апология математика", если читать ее с тем вниманием к тексту, которое она заслуживает, — писал в предисловии Чарльз Сноу, — книга, пронизанная неизбывной печалью. Да, она блещет остроумием и игрой ума, да, ее все еще отличает кристальная ясность и искренность, да, это завещание художника-творца.
И вместе с тем „Апология математика" — это стоически сдержанный сокрушенный плач по творческим силам, которые некогда были и никогда не вернутся снова».
Сам Харди подтверждает это в первых строках своего эссе: «Писать о математике — печальное занятие для профессионального математика. Математик должен делать что-то значимое, доказывать новые теоремы, чтобы увеличивать математические знания, а не рассказывать о том, что сделал он сам или другие математики.
Государственные деятели презирают пишущих о политике, художники презирают пишущих об искусстве. Врачи, физики или математики обычно испытывают аналогичные чувства. Нет презрения более глубокого или в целом более обоснованного, чем то, которое люди создающие испытывают по отношению к людям объясняющим. Изложение чужих результатов, критика, оценка — работа для умов второго сорта». Он продолжает: «Но если я теперь сижу и пишу о математике, а не занимаюсь собственно математикой, то это — признание в собственной слабости, за которую молодые и более сильные математики с полным основанием могут презирать или жалеть меня. Я пишу о математике потому, что, подобно любому другому математику после шестидесяти, я не обладаю более свежестью ума, энергией и терпением, чтобы успешно выполнять свою непосредственную работу».
Цель этого раздела — описать свойства математики, которые наделяют ее эстетической ценностью. Во-первых, напомним, что математик создает образы из идей. Харди писал в «Апологии математика»: «Создаваемые математиком образы, подобно образам художника или поэта, должны обладать красотой; подобно краскам или словам, идеи должны сочетаться гармонически».
Таким образом, чтобы достичь поставленной цели, мы должны определить, какие основные свойства наделяют математические идеи эстетической ценностью. Начнем с того, что выделим два основных аспекта, внутренне присущих математическим идеям и способных перевести их в эстетическое измерение. Эти аспекты — общность и глубина.
Пример из Эйлера как отправная точка
Проиллюстрируем рассуждения Харди об этих свойствах математических идей на не слишком сложном примере, чтобы читатель, не обладающий обширными знаниями математики, мог понять его. При этом наш пример достаточно сложен, чтобы адекватно проиллюстрировать все рассуждения Харди об эстетической ценности математических идей и связать их с философскими рассуждениями об эстетике, принадлежащими другим авторам. Выбранный нами пример показывает, как Эйлер вычислил сумму чисел, обратных квадратам натуральных чисел, в своей книге «Введение в анализ бесконечно малых» (Introductio in analysin infinitorum). Эйлер вычислил следующую сумму:
- Предыдущая
- 24/34
- Следующая