Выбери любимый жанр

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл - Страница 57


Изменить размер шрифта:

57

Как уже было кратко отмечено, имеющаяся у этанола гидроксильная группа (OH) привносит два небольших изменения. Атом кислорода несёт частичный отрицательный заряд, а атом водорода — частичный положительный. Схематически это обозначается так: O???H?+ (греческая буква ? «дельта» используется здесь в значении «частичный»). За дельтой следует знак электрического заряда атома. Величина электронной плотности, передаваемая от атома H к атому O, очень мала — много меньше заряда одного электрона, который передаётся в такой соли, как NaCl, где ионы обозначаются Na+ и Cl?. Связь между кислородом и водородом в основном ковалентная, а не ионная, как в NaCl. Однако частичные заряды на атомах O и H невероятно важны. Они возникают из-за особенностей молекулярных орбиталей, отвечающих за ковалентную связь кислорода и водорода. Эти частичные заряды приводят к тому, что этанол оказывается жидкостью. Если позволить себе лёгкое преувеличение, то можно сказать, что без того же рода частичных зарядов на атомах кислорода и водорода в молекулах воды жизнь не могла бы существовать.

Этанол является жидким, поскольку описанные небольшие изменения приводят к появлению своего рода химических взаимодействий между молекулами, которые называются водородными связями. Водородные связи намного — примерно в десять раз или более — уступают по силе настоящим ковалентным химическим связям. Чтобы точно описать образование водородных связей, необходима квантовая теория, однако получить представление на качественном уровне можно, рассматривая электростатическое взаимодействие между частичными зарядами. Водородная связь образуется, когда частично положительный атом водорода в одной молекуле притягивается к частично отрицательному атому кислорода в другой молекуле. За счёт этого притяжения атом водорода одной молекулы этанола тяготеет к строго определённому положению относительно атома кислорода другой молекулы этанола. Это притяжение удерживает молекулы этанола вместе и делает вещество жидким при комнатной температуре. В этане такого относительно сильного межмолекулярного взаимодействия нет.

Тепло — это форма кинетической энергии. При повышении температуры беспорядочное движение молекул усиливается. В этане молекулы не испытывают сильного притяжения друг к другу. При комнатной температуре тепловые движения не позволяют молекулам этана соединяться, и поэтому этан является газом. Представьте себе, что вы, держа за руки другого человека, побежали с ним в противоположных направлениях. Если ваше рукопожатие слабое, оно разорвётся, и вы разбежитесь, как молекулы этана. Если же вы держитесь очень крепко, то останетесь вместе и станете двигаться, будто связаны друг с другом, как молекулы этанола.

Абсолютный минимум. Как квантовая теория объясняет наш мир - i_092.jpg

Рис. 15.2. Четыре молекулы этанола связаны в цепочку. Атомы кислорода на этом рисунке изображены тёмно-серыми. Кислород, помимо связанных с ним атомов водорода и углерода, имеет две неподелённые пары. Штриховые линии показывают водородные связи, которые идут от атома H гидроксильной группы одной молекулы этанола к неподелённым парам кислорода другой молекулы этанола

На рис. 15.2 изображены четыре молекулы этанола, соединённые в цепочку водородными связями. Штриховые линии идут от водорода в OH-группе одной молекулы этанола к неподелённой паре на атоме кислорода другой молекулы этанола. Неподелённая пара имеет высокую электронную плотность, так что частично положительный атом H притягивается к электронам неподелённой пары кислорода. Это продолжается от одной молекулы этанола к другой, и так образуется цепочка. Жидкий этанол состоит из цепочек молекул, которые соединяются водородными связями. Водородные связи делают этанол жидким при комнатной температуре, но они относительно слабые. Эти связи постоянно разрушаются и реорганизуются, но в среднем каждая молекула этанола имеет водородную связь (H-связь) с одной или несколькими другими молекулами этанола. Однако если достаточно сильно нагреть этанол, тепловые движения начнут разрушать H-связи, и молекулы будут разлетаться. Температура, при которой тепловой энергии достаточно для разделения молекул этанола, — это и есть точка кипения, равная 78 °C. При этой и более высокой температуре этанол становится газом.

Вода образует водородные связи

Вернёмся к вопросу о том, почему водородные связи необходимы для жизни. Вода (H2O) имеет очень маленькую молекулу. По молекулярной массе она сравнима с кислородом O2, азотом N2 и метаном CH4, которые при комнатной температуре являются газами. Вода содержит один атом кислорода, связанный с двумя атомами водорода. Как и в случае с этанолом, кислород создаёт ковалентные связи с атомами водорода, но в ковалентной связи O?H электроны делятся не идеально поровну. В молекуле воды кислород перетягивает часть электронной плотности от атомов H. Демонстрирующая это схема молекулы воды выглядит так: H?+?O???H?+. Частично положительные атомы водорода одной молекулы воды притягиваются к частично отрицательным атомам кислорода другой молекулы. Одна молекула воды может создать до четырёх водородных связей.

Схематическая иллюстрация водородных связей воды представлена на рис. 15.3. Центральная молекула воды имеет четыре водородные связи с окружающими четырьмя молекулами. Две гидроксильные группы этой центральной молекулы воды связаны водородными связями с двумя атомами кислорода других молекул воды. При этом гидроксильные группы двух других молекул воды образуют водородные связи с атомом кислорода центральной молекулы. В отличие от модели молекулы, представленной на рис. 15.3, водородные связи не ограничиваются этими пятью молекулами. Каждая из четырёх внешних молекул сама создаёт около четырёх связей с другими молекулами воды. В результате получается сеть водородных связей.

Абсолютный минимум. Как квантовая теория объясняет наш мир - i_093.jpg

Рис. 15.3. Центральная молекула воды связана водородными связями с четырьмя окружающими молекулами воды. Атомы водорода из двух гидроксильных групп центральной молекулы воды связаны с двумя атомами кислорода других молекул, а атом кислорода центральной молекулы воды притягивает две гидроксильные связи двух других молекул воды

Тепла при комнатной температуре довольно много, так что водородные связи между одними молекулами воды постоянно разрушаются и вместо них образуются водородные связи с другими молекулами воды. Поэтому сеть водородных связей не является статичной. Она постоянно трансформируется и реорганизуется. Характерный временной масштаб этой реорганизации водородных связей был измерен при помощи сверхскоростной инфракрасной спектроскопии и составляет примерно 3 пс (1 пс = 10?12 сек){25}.

Жизнь основана на химических реакциях, которые протекают в воде. Космический аппарат, отправленный недавно на Марс, ищет не столько непосредственные свидетельства существования в прошлом жизни, сколько признаки существования в прошлом жидкой воды. Жидкая вода имеет настолько фундаментальное значение для существования жизни, что её присутствие является необходимым и, возможно, достаточным для этого условием. Удивительные свойства воды, которые чрезвычайно важны для протекания биохимических реакций, являются следствием строения этой сети водородных связей и её способности к реорганизации. Свойства воды позволяют протекать огромному числу химических процессов, необходимых для жизни. Например, именно в воде происходит фолдинг белков{26}.

Белки — это очень большие и чрезвычайно сложные молекулы, ответственные за большинство химических процессов в наших телах. Когда белки химически производятся другими белками, то первоначально они не обладают правильной конфигурацией для выполнения своих функций. Они находятся в развёрнутом состоянии. У белков есть участки, которые вскоре образуют водородные связи с водой, и участки, которые больше похожи на углеводороды и не хотят смешиваться с водой. Белок меняет своё строение, складываясь таким образом, чтобы гидрофильные (любящие воду) участки находились снаружи и контактировали с водой, образуя с ней водородные связи, а гидрофобные (избегающие воды) участки располагались внутри, вдали от воды. Такое избирательное взаимодействие с водой — важная движущая сила, помогающая белкам принимать правильную форму, необходимую для выполнения их функций. Именно благодаря тому, что вода может легко реорганизовывать свою сетевую структуру, создавая и разрушая водородные связи, она легко поддерживает структурные преобразования белков и огромное число других химических процессов, которые протекают в живых организмах.

57
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело