По ту сторону кванта - Пономарев Леонид Иванович - Страница 16
- Предыдущая
- 16/63
- Следующая
После этой цитаты многие разочаруются: Резерфорд не придумал ничего нового. Это обычное и частое заблуждение происходит от непонимания различий между наукой и натурфилософией. В науке действует строгое правило: открыл тот, кто доказал. А доказать что бы то ни было в науке можно лишь с помощью опытов и чисел.
Все прежние высказывания опирались на чистое умозрение и потому звучали примерно так: атом, вероятно, может иметь такую-то структуру. Только Резерфорд имел моральное право сказать: «Так должно быть. Я могу доказать это с числами в руках. И каждый, кто захочет, может проверить их, если повторит мои опыты».
«Сказать, оно конечно, всё можно, а ты поди демонстрируй», любил повторять Менделеев. И эту разницу между расплывчатой идеей и научным доказательством всегда следует помнить в частых спорах о приоритете, которые время от времени вспыхивают в истории науки. В таких случаях разумно считать создателями теорий не тех, кто их впервые высказал, а тех, чьи работы — в силу глубоких причин или случайных обстоятельств — оказали решающее влияние на последующее развитие науки. В этом есть элемент чисто человеческой несправедливости. Но история не мыслит категориями морали: её задача не успокоение обид, а установление истинной последовательности причин и следствий.
СВЕТОВОЕ ДАВЛЕНИЕ
Гипотеза о световом давлении появилась уже во времена Кеплера, который выдвинул её в 1619 году для объяснения происхождения и формы хвостов комет. О величине светового давления не было известно ничего и, как всегда в таких случаях, о нём рассказывали баснословные истории. Например, некто Гартзокер в 1696 году передавал рассказ путешественников, по словам которых «течение вод Дуная значительно медленнее утром, когда лучи Солнца противодействуют его движению, и ускоряется после полудня, когда лучи Солнца помогают его течению».
До конца прошлого века многочисленные попытки обнаружить световое давление экспериментально оканчивались полной неудачей. Причина этих неудач стала вполне ясной после теоретических работ Максвелла и успешных опытов Лебедева. Оказалось, что световое давление очень мало. Например, даже в ясный, безоблачный день давление солнечного луча на площадку в 1 кв. см не превышает 0,82•10?10 г. Для сравнения напомним, что маковое зерно весит в миллион раз больше.
ГЛАВА ЧЕТВЁРТАЯ
В своё время почти каждый из нас грезил пиратами и фрегатами. В пылких мечтах мы переживали бои и погони, тайны острова сокровищ и подвиги благородства. Мы видели почти наяву, как по голубому морю, слегка накренившись, фрегаты бесшумно уходят за горизонт, оставляя за кормою пенный след. Иногда, чтобы увеличить скорость парусника, пираты шли на отчаянный шаг: они выбрасывали за борт балласт и лишь благодаря этому благополучно уходили от погони. Зачастую это им сходило с рук, но время от времени они бывали жестоко наказаны: фрегат, лишённый балласта, становился неустойчивым, как яичная скорлупа под парусами, и первый же шквал опрокидывал его вверх дном.
Эта глава, пожалуй, самая трудная в книге. На первый взгляд она может показаться настолько сухой и неоправданно сложной, что некоторые читатели сочтут её ненужным балластом. Но это тот самый балласт, который кладут на дно фрегата, балласт, без которого все паруса нашей фантазии не только бесполезны, но и опасны. Слишком часто в погоне за быстротой и лёгкостью
мы пренебрегаем устойчивостью и глубиной. Однако такая беспечность не остаётся безнаказанной: в какой-то момент переполненная чаша знаний, лишённая опоры точных фактов, опрокидывается, и всё приходится начинать сызнова.
В этой главе нет ничего такого, чего бы не смог понять вдумчивый и неторопливый читатель. Однако она требует некоторых навыков последовательного логического мышления. Как правило, эти минимальные усилия вознаграждаются впоследствии большей полнотой и «объёмностью» приобретаемых познаний. Вполне вероятно, что при первом чтении глава вызовет больше вопросов, чем разрешит. Это не беда. Зато она хоть немного позволит заглянуть внутрь «физической кухни», которая обычно скрыта за парадными обедами и здравицами в честь квантовой механики. А главное — лишь после таких экскурсов в глубь новых знаний возникает психологическое ощущение их стройности и устойчивости.
ДО БОРА
К тому времени, когда Нильс Бор появился в лаборатории Резерфорда в Манчестере, об атоме знали уже довольно много. Настолько много, что порой это мешало выделить из груды фактов главные.
На схеме (стр. 78–79) представлены только те из явлений, которые впоследствии оказались действительно основными для понимания структуры атома.
На основании этих фактов (которые наблюдать довольно легко) надо было угадать внутреннее устройство атома — объекта, который никто никогда не видел и не увидит. А у задач подобного типа есть общее название: проблема «чёрного ящика». Мы знаем характер воздействия на «чёрный ящик» — атом и результат этого воздействия, то есть знаем, что происходит и отчего. Но мы хотим знать больше: как всё происходит, то есть механизм явлений, протекающих в чёрном ящике. Достигнуть этого значительно труднее, чем восстановить действие в зрительном зале по обрывкам музыки и речи.
Даже если мы знаем все внешние проявления внутренних свойств атома, необходимо ещё их обобщение, синтез, необходима интуиция, которая через провалы в логических построениях безошибочно приводит к единственно верной картине явлений.
Из нашей далеко не полной схемы видна сложность задачи: необходимо с единой точки зрения (и непротиворечиво) объяснить все эти — очень разные — опыты. Нильс Бор нашёл такое объяснение, причём оно оказалось удивительно простым и совершенным по форме.
Это случилось тогда, когда Бору вдруг стало ясно, что три физические идеи: атомы, лучи, электроны — связаны между собой понятием кванта. До сих пор эти идеи развивались независимо. Химия и кинетическая теория материи доказали существование атомов. Электромагнитная теория света Максвелла изучала свойства лучей. Электродинамика Максвелла — Лоренца пыталась осмыслить понятие «электрон».
Квант действия h, даже после работ Эйнштейна и Милликена, в Европе никто не принимал всерьёз, хотя отдельные попытки использовать его были: в 1910 году Артур де Гааз попытался применить соотношение Планка E=h•? для определения границ и периодов движения электронов в атоме Томсона; Джон Никльсон в 1912 году пытался использовать идею квантов для анализа спектров Солнца и туманностей, а Вальтер Нернст выдвинул гипотезу о квантовании вращений.
Скептическое отношение к идее квантов лучше всего выразил сам Планк в книге, которую он написал в 1912 году.
«Когда подумаешь о полном экспериментальном подтверждении, которое получила электродинамика Максвелла в самых тонких явлениях интерференции, когда подумаешь о невероятных трудностях, которые повлёк бы за собой отказ от неё для всей теории электрических и магнитных явлений, то испытываешь какое-то отвращение, когда сразу же разрушаешь эти основы. По этой причине во всём дальнейшем изложении мы оставим в стороне гипотезу квантов света, тем более что её развитие находится ещё в зачаточном состоянии».
- Предыдущая
- 16/63
- Следующая