Этюды о Вселенной - Редже Тулио - Страница 35
- Предыдущая
- 35/43
- Следующая
Почему же действие батарейки не приводит к непрерывному ускорению движения электронов? в действительности атомы в кристаллической решетке металла выстроены не идеально, и в металле имеются многочисленные дефекты, при соударениях с которыми электроны теряют свою энергию, передавая ее кристаллической решетке.
Колебания решетки проявляются в виде тепла; это как раз то тепло, которое создается электрическим током, заставляющим светиться нити лампочек,. и используемое во множестве технических приложений. в отличие от проводника электроны в изоляторе крепко связаны с атомами и не могут свободно перемещаться и переносить электричество.
Механизм сверхпроводимости
Что же происходит в сверхпроводнике? Полный ответ на этот вопрос длинен и сложен. Обычно два электрона в пустоте отталкиваются, но в металле положительные заряды ядер экранируют отрицательные заряды электронов, и отталкивание может почти полностью исчезнуть. Во многих случаях экранировка оказывается неполной, и тогда сверхпроводимость не наблюдается.
В некоторых случаях решетка сжимается вокруг электрона, создавая таким образом облако положительных зарядов, обволакивающее этот электрон и притягивающее другие электроны. Результатом является возникновение незначительного притяжения между электронами. Поскольку это притяжение слабое, оно приводит всего лишь к тому, что электроны передвигаются парами («куперовские пары», упомянутые выше); таким образом, возникает связь, подобная химической, но в тысячи раз слабее. Следовательно, куперовская пара подобна молекуле «двухэлектрона», а переход в состояние сверхпроводимости можно считать превращением электронного газа в газ, состоящий из таких «молекул». Аналогичное явление встречается в химии: так, если нагреть двухатомный кислород, он распадается на одиночные атомы, способные вновь объединиться при охлаждении.
Электронный газ, движущийся в металле, конденсируется в жидкость из куперовских пар, которую мы и будем называть «конденсатом». Радиус такой пары равен примерно 300 Ǻ (1000 Ǻ (ангстрем) = 1/100000 мм), что намного больше расстояния между соседними атомами (несколько ангстрем). в море, состоящем из куперовских пар, трудно представить себе рябь или волны, длина которых была бы меньше самих пар. Поэтому неоднородности решетки с размерами не больше десятка ангстрем не представляют собой препятствия для течения конденсата, и потери энергии не происходит. Такова основная причина возникновения сверхпроводимости.
Конденсация БКШ, однако, не исключает полностью взаимодействия между парами электронов и кристаллической решеткой; такое взаимодействие, естественно, требует выплаты «энергетического штрафа». Действительно, при сообщении электронной паре энергии, достаточной, чтобы ее разбить, электроны могут воспользоваться присутствием решетки и передать ей тепло. Такой эффект наблюдается при температурах выше температуры сверхпроводящего перехода (несколько градусов Кельвина), а подогреть проволоку можно, например увеличивая силу тока в ней. Конденсат обычно движется без столкновений, но при увеличении скорости его движения наступает момент, когда пара может всю свою энергию использовать, чтобы разорвать связь, и тут же почувствует, что существуют препятствия. Тогда сверхпроводимость исчезает.
По этой причине практическая польза сверхпроводимости всегда ограничивалась умеренной величиной максимального допустимого тока; только недавно были открыты сплавы на основе ниобия, проводящие очень высокие токи и позволяющие, следовательно, получить чрезвычайно высокие магнитные поля.
Эффекты Мейснера-Оксенфельда
Исключительная подвижность зарядов в сверхпроводнике приводит к поразительным явлениям. Металл, естественно, экранирует любое электрическое поле, поскольку заряды в нем располагаются так, чтобы сохранить общую нейтральность вещества.
Большего внимания заслуживает эффект Мейснера-Оксенфельда. Если поместить сверхпроводник во внешнее магнитное поле, то оно немедленно вызовет появление постоянных токов на поверхности металла, препятствующих проникновению самого магнитного поля внутрь этого металла, т.е. сверхпроводник служит идеальной «диамагнитной» средой – он идеально экранирует магнитное поле. Экранирование эффективно только до критического значения магнитного поля; при дальнейшем увеличении поля токи, вызванные им, оказываются слишком большими, поле проникает в вещество, разваливает куперовские пары и разрушает сверхпроводимость.
Этот диамагнетизм вызывает любопытные эффекты; если бы мы надели на руку сверхпроводящую перчатку, то могли бы «почувствовать» и «схватить» силовые линии магнитного поля так же, как пучок спагетти. с «точки зрения сверхпроводника» магнит – это твердый предмет, из которого торчит огромный пучок упругих силовых линий. Если магнит поместить, например, в сверхпроводящую чашу, то он будет висеть в воздухе, поддерживаемый своим собственным магнитным полем.
В сверхпроводящем кольце ток может циркулировать бесконечно; эксперименты позволяют сделать вывод, что даже в течение ста тысяч лет неоднократные повторные измерения тока с помощью какого-либо из наиболее чувствительных способов не обнаружили бы никаких изменении тока. Здесь мы имеем, следовательно, нечто подобное вечному двигателю, благодаря которому заряд может вращаться по кругу без необходимости получать энергию от какой-нибудь батареи. Конечно, должно быть ясно, что извлечение энергии из такого кольца свело бы ток в нем к нулю.
Легко представить себе возможности применения сверхпроводников в технике, если бы мы могли изготовлять их из материалов, не требующих для перехода в сверхпроводящее состояние слишком низких температур. Тогда открылись бы необозримые горизонты для различных применений, начиная с передачи энергии на далекие расстояния без потерь и кончая созданием сверхмагнитов, практически не потребляющих электрической энергии, и проектированием сверхпроводящих рельсов, по которым поезд-магнит скользил бы совсем без трения. в связи с этим можно вспомнить сверхмагниты (сверхпроводящие магниты), используемые в современных ускорителях частиц.
Материал, пригодный для создания высокотемпературной сверхпроводимости (если бы он был найден) немедленно обрел бы огромное значение не только для промышленности; исследования в этом направлении ведутся с использованием весьма внушительных средств, и результаты, возможно, не заставят себя долго ждать.
Энтропия играет фундаментальную роль для всей термодинамики и косвенно для всех ее практических применений (а их много), в которых происходят обмен теплом и преобразование его в энергию механическую или электрическую. Идеи, высказанные Ильей Пригожиным (бельгийский ученый, лауреат Нобелевской премии по химии) в книге «Великий союз» можно понять, только если предварительно постараться уяснить, что же такое энтропия.
Кроме того, занимаясь термодинамикой, мы сможем коснуться классической статистической механики, а о квантовой статистике мы уже получили некоторое представление при обсуждении сверхтекучести.
Начала термодинамики
Первое начало термодинамики утверждает, что теплота является формой энергии и что она должна учитываться как таковая в законе сохранения энергии. Когда включена электрическая печь, электрическая энергия источника питания превращается в теплоту. При ударе молота о наковальню механическая энергия движения молота превращается в теплоту. Наконец, при торможении автомобиля его энергия движения превращается в теплоту трения в тормозных колодках. Энергия ни при каких обстоятельствах не исчезает, она просто превращается в теплоту, чтобы затем рассеяться в окружающей среде. Энергия, естественно, и не возникает из ничего, вечное движение остается совершенно невозможным.
Но к этой теме мы вернемся в конце книги. Второе начало термодинамики накладывает дополнительные ограничения на взаимный обмен тепла и других форм энергии.
Каким же видом энергии является теплота? в прошлом веке бытовало мнение, что теплота– это жидкость, которая переливается из горячих тел в холодные. Правильное объяснение понятия теплоты было дано только на основе статистической механики. Материальное тело состоит из огромного количества атомов; газ можно представить как совокупность бесчисленных шариков, передвигающихся во все стороны и непрерывно сталкивающихся. Кусок кристалла горного хрусталя (кварца) кажется неподвижным и неизменным. Если бы мы могли заглянуть внутрь и увидеть там атомы, то обнаружили бы, что они расположены упорядоченно вдоль фигур, имеющих ту же симметрию, что кристалл, но они вовсе не неподвижны. Вся кристаллическая решетка непрерывно сотрясается от беспорядочных толчков атомов. Толчки усиливаются с увеличением температуры; при достижении некоторого предела они разрушают кристалл, и он распадается. Тепловая энергия представляет собой не что иное, как сумму энергий беспорядочного движения отдельных атомов; температура, в сущности, говорит нам о том, какая энергия в среднем приходится на один атом в среде.
- Предыдущая
- 35/43
- Следующая