Этюды о Вселенной - Редже Тулио - Страница 29
- Предыдущая
- 29/43
- Следующая
Древнегреческие философы приписывали атомам исключительно правильные и симметричные формы. Хотя реальные атомы весьма далеки от этого, мысль о том, что в физике понятие симметрии должно играть важную роль, осталась. Классификация частиц по семействам как раз и отражает существование какой-то симметрии в природе; рассмотрим ее.
SU-3-симметрия
Гейзенберг считал протон и нейтрон двумя состояниями одной и той же частицы – нуклона. Нуклон может перемещаться в пространстве, вращаться вокруг собственной оси, подобно волчку («спин»), а также принимать два различных образа – быть либо нейтроном, либо протоном. Подобные рассуждения применимы и к трем пионам. Согласно такой точке зрения, переход между протоном и нейтроном происходит в другом, особом, пространстве, для построения которого необходимо ввести дополнительную степень свободы и не ньютоновские измерения.
Прерывистый характер таких переходов обусловлен принципами квантовой механики и тесно связан с идеей квантования орбит, о которой мы уже говорили. Новое пространство, в котором перемещаются нуклоны и пионы, кроме того, что в нем возникают другие семейства частиц, примечательно еще и высокой степенью симметрии (самую простую аналогию мы получим, вообразив круг или сферу). из этой симметрии следует прежде всего, что частицы, входящие в одно семейство, имеют почти одинаковые свойства, если не считать электрического заряда. Наличие сверх семейств (как говорят физики, мультиплетов SU-3) означает, что у частиц имеются дополнительные степени свободы, или возможности изменения состояния. Существует математическое понятие группы, на котором мы не будем здесь останавливаться. с помощью этого понятия и производится систематизация всех возможных и воображаемых симметрий. Теория групп вошла в теоретическую физику еще в 30-е годы, и ее триумфальное шествие продолжается по сей день. на ее основе можно предсказать детали строения и внутренние иерархии всех семейств группы SU-3; в действительности эти предсказания можно распространить на любую симметрию, включая те, которые еще предстоит открыть.
Кварки
Так было предсказано существование сверхсемейств, состоящих из десяти членов; в одном из них сначала отсутствовал десятый член-частица Ω–, впоследствии открытая на ускорителях. Что еще более удивительно, теория предсказала существование семейства всего из трех частиц, ни одна из которых не была еще обнаружена в природе. Эти гипотетические частицы окрестили «кварками» (слово заимствовано из романа Джойса «Поминки по Финнегану»; «кварк» по-немецки означает также «творог»). Если кварки существуют, то они должны иметь еще не встречавшийся ни у одной частицы дробный электрический заряд, кратный одной трети заряда электрона. По этой причине и из-за их упорного нежелания показаться на ускорителях многие физики ставили под сомнение само их существование. с другой стороны, оказывается очень удобным считать нуклоны, пионы и почти все известные частицы состоящими из кварков. Нуклон, например, состоял бы тогда из трех кварков, а пион – из кварка и антикварка.
Совсем недавно были открыты частицы, для объяснения существования которых требуется введение четвертого и даже пятого кварка. Каждый кварк обладает набором свойств, который получил название «аромат» (ilavour по-английски).
Первая пара кварков, объясняющая строение нуклонов и пионов, известна как u- и d-кварки (up – «вверх» и down – «вниз»). Очарованный и странный (от англ. charm и strangeness) кварки дают начало другим частицам; наконец b – (от слов bottom – «дно» или beauty – «красота») и t (от top – «вершина» или truth – «истина») кварки должны объяснять или предсказывать новые семейства частиц. Кварк t еще не обнаружен, но существует мнение, что он будет открыт в недалеком будущем. Как мы видим, кварки объединены в пары (поколения).
Семейства 1963 г. образованы кварками u, d и s; открытие кварков b и t привело к появлению сложных классификационных схем, которые могли бы составить конкуренцию структурным формулам органической химии. По причинам, на которых у нас нет возможности останавливаться, каждый кварк существует в трех состояниях (каждому из которых присвоили свой «цвет»: желтый, красный, синий – как цвета испанского флага). Итак, должно быть восемнадцать кварков, отмеченных «цветом» и «ароматом». Некоторые физики считают это число слишком большим и хотели бы разложить кварки на более простые или элементарные составные части.
Глюоны
Что же связывает кварки друг с другом? Для этой цели были придуманы глюоны (glue по-английски означает клей) и создана теория, похожая на квантовую электродинамику и названная квантовой хромодинамикой. Эта теория рассматривает сложный пространственно-временной пинг-понг, отражающий передачу посредством глюонов огромных сил, связывающих отдельные кварки. Такие теории пока еще очень далеки от строгих выводов, подобных тем, какие дает квантовая электродинамика, и, хотя они объясняют качественно многие результаты сами являются объектом горячих споров.
Один из наиболее заметных успехов теории связан с экспериментами на ускорителе «ПЕТРА» (PETRA) в Гамбурге. Согласно выводам квантовой хромодинамики, мы не видим свободных кварков, потому что силы взаимодействия между ними, передаваемые глюонами, не убывают с увеличением расстояния. По сути, кварки всегда связаны атомной «пружиной», которая удерживает их с силой в несколько тонн. в Гамбурге наблюдали столкновения электронов и позитронов очень высоких энергий. Их общая энергия в таком столкновении может материализоваться (согласно формуле E = mc2), превращаясь в пары частиц кварк-антикварк, которые резко расходятся, растягивая «атомную пружину». в конечном итоге множество возникающих при этом частиц разлетается в виде двух струй, ориентированных вдоль «пружины». Временами рождается глюон, который дает начало третьей струе.
Еще одно важное подтверждение существования кварков основано на наблюдаемом распределении заряда внутри нуклонов, которые, судя по всему, состоят из «кусков» с электрическими зарядами, равными дробному заряду – заряду кварка.
Критика понятия элементарности
Полностью ли мы уверены в этих результатах? Попытки во что бы то ни стало найти элементарное всегда сводились к сменявшимся успехам и разочарованиям, которые наслаивались друг на друга, как серия китайских резных шаров. от атомов мы перешли к ядрам, от ядер к нуклонам, от них к кваркам; уже есть предложения заняться поисками «ришонов» («ришон» на языке идиш означает «первый»), т.е. первичных составляющих вещества. Такие занятия Гейзенберг подверг критике, подхваченной затем Фейнманом. Когда электрон присоединяется к протону, освобождается энергия, соответствующая превращению некоторой массы согласно формуле E = mc2. Этой массы должно не хватать в атоме, который будет «весить» немного меньше, чем его составные части. Пропадает, конечно, ничтожная масса, меньше миллиардной части полной. а вот при образовании ядра уже исчезает одна тысячная часть массы; в случае ядер в отличие от фанерных самолетов вычитается масса клея. в некоторых моделях Ферми пион представлялся как связанное состояние протона и антипротона, каждый из которых имеет массу, в пять раз большую, чем пион; следовательно, «клей» уносит в этом случае 90% всей массы.
Итак, составные части оказываются заметно больше целого. Нельзя и дальше судить о степени элементарности какого-либо объекта на основании его величины; так, масса кварков может оказаться намного больше массы пионов. Это означает также, что процесс дальнейшего проникновения в глубь элементарных частиц может оказаться бесконечным, и, удивляясь, мы будем открывать новые, все более тяжелые, но вовсе не более простые объекты с «клеем» чрезвычайно большой массы.
Квантовая механика усугубляет эти трудности любопытным образом. Соединяясь друг с другом, две частицы вынужденно оказываются в квантованных состояниях; при этом, как в атоме водорода, допустимы только определенные орбиты. Здесь применить критерий элементарности труднее: если бы мы наблюдали непрерывную последовательность орбит, постепенно исчезающих одна внутри другой, то могли бы утверждать, что имеем дело с объектом сложным, но такая возможность закрыта наличием квантов. По этой причине получила распространение идея, согласно которой все частицы состоят друг из друга, и ни одна из них не является элементарной. Другие теории представляют частицы в виде колебательных состояний какого-то сверх поля, являющегося единственной реальностью. Согласно этим теориям, сами понятия элементарности и составного состояния неадекватны и несовершенны. Среди не доведенных до конца попыток создания такой теории следует отметить теорию Гейзенберга, не лишенную в высшей степени оригинальных идей.
- Предыдущая
- 29/43
- Следующая