Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер - Страница 17
- Предыдущая
- 17/160
- Следующая
Меня всегда несколько смущало представление о конечном устройстве, которое двигает потенциально бесконечную ленту вперед и назад. Неважно, насколько легок материал ленты — сдвинуть бесконечную ленту все-таки будет трудно! Вместо этого я предпочитаю представлять себе эту ленту как некое окружение, по которому может перемещаться наше конечное устройство. (Конечно же, в современных электронных устройствах ни «лента», ни само «устройство» не должны в обычном смысле физически «перемещаться», но представление о таком «движении» позволяет достичь известной наглядности.) При таком подходе устройство получает все входные данные из этого окружения, использует его в качестве «черновика» и, наконец, записывает в него конечный результат.
В представлении Тьюринга «лента» состоит из бесконечной в обоих направлениях линейной последовательности квадратов. Каждый квадрат либо пуст, либо помечен[41]. Использование помеченных и пустых квадратов означает, что мы допускаем разбиение нашего «окружения» (т. е. ленты) на части и возможность его описания множеством дискретных элементов (в противоположность непрерывному описанию). Это представляется вполне разумным, если мы хотим, чтобы наше устройство работало надежно и совершенно определенным образом. В силу используемой математической идеализации мы допускаем (потенциальную) бесконечность «окружения», однако в каждом конкретном случае входные данные, промежуточные вычисления и окончательный результат всегда должны быть конечными. Таким образом, хотя лента и имеет бесконечную длину, на ней должно быть конечное число непустых квадратов. Другими словами, и с той, и с другой стороны от устройства найдутся квадратики, после которых лента будет абсолютно пустой. Мы обозначим пустые квадраты символом «0», а помеченные — символом «1», например:
Нам нужно, чтобы устройство «считывало» информацию с ленты. Мы будем считать, что оно считывает по одному квадрату за раз и смещается после этого ровно на один квадрат влево или вправо. При этом мы не утрачиваем общности рассуждений: устройство, которое читает за один раз n квадратов или перемещается на k квадратов, легко моделируется устройством, указанным выше. Передвижение на k квадратов можно построить из к перемещений по одному квадрату, а считывание n квадратов за один прием сводится к запоминанию результатов n однократных считываний.
Что именно может делать такое устройство? Каким образом в самом общем случае могло бы функционировать устройство, названное нами «механическим»? Вспомним, что число внутренних состояний нашего устройства должно быть конечным. Все, что нам надо иметь в виду помимо этого — это то, что поведение нашего устройства полностью определяется его внутренним состоянием и входными данными. Входные данные мы упростили до двух символов — «0» и «1». При заданном начальном состоянии и таких входных данных устройство должно работать совершенно определенным образом: оно переходит в новое состояние (или остается в прежнем), заменяет считанный символ 0 или 1 тем же или другим символом 1 или 0, передвигается на один квадрат вправо или влево, и наконец, оно решает, продолжить вычисления или же закончить их и остановиться.
Чтобы явно определить операции, производимые нашим устройством, для начала пронумеруем его внутренние состояния, например: 0,1,2,3,4,5. Тогда действия нашего устройства, или машины Тьюринга, полностью определялись бы неким явным списком замен, например:
00 → 00R
01 → 131L
10 → 651R
11 → 10R
20 → 01R.STOP
21 → 661L
30 → 370R
• •
• •
• •
2100 → 31L
• •
• •
• •
2581 → 00R.STOP
2590 → 971R
2591 → 00R.STOP
Выделенная цифра слева от стрелки — это символ на ленте, который устройство в данный момент считывает. Оно заменяет этот символ выделенной цифрой в середине справа от стрелки. R означает, что устройство должно переместиться вдоль ленты на один квадрат вправо, a L соответствует такому же перемещению влево. (Если, в соответствии с исходным представлением Тьюринга, мы полагаем, что движется не устройство, а лента, то R означает перемещение ленты на один квадрат влево, a L — вправо.) Слово STOP означает, что вычисления завершены и устройство должно остановиться. Например, вторая инструкция 01 → 131L говорит о том, что если устройство находится в начальном состоянии 0 и считывает с ленты 1, то оно должно перейти в состояние 13, оставить на ленте тот же символ 1 и переместиться по ленте на один квадрат влево. Последняя же инструкция 2591 → 00R.STOP говорит о том, что если устройство находится в состоянии 259 и считывает с ленты 1, то оно должно вернуться в состояние 0, стереть с ленты 1, т. е. записать в текущий квадрат 0, переместиться по ленте на один квадрат вправо и прекратить вычисления.
Вместо номеров 0, 1, 2, 3, 4, 5…. для обозначения внутренних состояний мы можем — и это более соответствовало бы знаковой системе нанесения меток на ленту — прибегнуть к системе нумерации, построенной только на символах «0» и «1». Состояние n можно было бы обозначить просто последовательностью из n единиц, но такая запись неэффективна. Вместо этого мы используем двоичную систему счисления, ставшую теперь общепринятой:
0 → 0,
1 → 1,
2 → 10,
3 → 11,
4 → 100,
5 → 101,
6 → 110,
7 → 111,
8 → 1000,
9 → 1001,
10 → 1010,
11 → 1011,
12 → 1100 и т. д.
Здесь последняя цифра справа соответствует «единицам» точно так же, как и в стандартной (десятичной) системе записи, но цифра прямо перед ней показывает число «двоек», а не «десятков». В свою очередь третья цифра справа относится не к «сотням», а к «четверкам»; четвертая — к «восьмеркам», а не к «тысячам» и т. д. При этом разрядность каждой последующей цифры (по мере продвижения влево) дается соответственной степенью двойки: 1, 2, 4 (= 2 х 2), 8 (= 2 х 2 х 2), 16 (= 2х2х2х2), 32 (= 2x2x2х2х2). (В дальнейшем нам будет иногда удобно использовать в качестве основания системы счисления числа, отличные от «2» и «10». Например, запись десятичного числа 64 по основанию «три» даст 2101, где каждая цифра теперь — некоторая степень тройки:
64 = (2 х З3) + З2 + 1; см. главу 4).
Используя двоичную запись для внутренних состояний, можно представить вышеприведенную инструкцию, описывающую машину Тьюринга, следующим образом:
Здесь я к тому же сократил R.STOP до STOP, поскольку мы вправе считать, что L.STOP никогда не происходит, так как результат последнего шага вычислений, будучи частью окончательного ответа, всегда отображается слева от устройства.
Предположим, что наше устройство находится во внутреннем состоянии, представленном бинарной последовательностью 11010010, и процессу вычисления соответствует участок ленты, изображенный на предыдущем рисунке. Пусть мы задаем команду
110100100 → 111L.
Та цифра на ленте, которая в данный момент считывается (в нашем случае цифра «0»), показана «жирным» символом справа от последовательности нулей и единиц, обозначающих внутреннее состояние.
- Предыдущая
- 17/160
- Следующая