Выбери любимый жанр

Нормальная физиология - Агаджанян Николай Александрович - Страница 10


Изменить размер шрифта:

10

При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из межфибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина. Вследствие чего тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Затем происходит фосфорилирование миозина за счет АТФ, что также способствует временному разобщению нитей. Расслабление мышцы после ее сокращения происходит пассивно – актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон, а также сокращения мышц-антагонистов.

Гладкие мышцы

Эти мышцы образуют мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток. Гладкие мышцы разделяются на две основные группы: мультиунитарные и унитарные. Мультиунитарные мышцы функционируют независимо друг от друга, и каждое волокно может иннервироваться отдельным нервным окончанием. Такие волокна обнаружены в ресничной мышце глаза, мигательной перепонке и мышечных слоях некоторых крупных сосудов, к ним относятся мышцы, поднимающие волосы. У унитарных мышц волокна настолько тесно переплетены, что их мембраны могуг сливаться, образуя электрические контакты (нексусы). При раздражении одного волокна за счет этих контактов ПД быстро распространяются на соседние волокна. Поэтому, несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, в реакцию вовлекается вся мышца. Такие мышцы имеются в большинстве органов: пищеварительном тракте, матке, в мочеточниках.

Особенностью гладких мышц является их способность осуществлять медленные и длительные тонические сокращения. Медленные, ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц обеспечивают функционирование сфинктеров полых органов, которые препятствуют выходу их содержимого.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов. Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления.

Сильное и резкое растяжение гладких мышц вызывает их сокращение, что обусловлено нарастающей при растяжении деполяризацией клеток, которая обеспечивает автоматию гладкой мышцы. Такое сокращение играет важную роль в авторегуляции тонуса кровеносных сосудов, а также способствует непроизвольному опорожнению переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.

В гладких мышцах тетаническое сокращение возникает при низкой частоте стимуляции. В отличие от скелетных, гладкие мышцы способны развивать спонтанные тетанообразные сокращения в условиях денервации и даже после блокады интрамуральных ганглиев. Такие сокращения возникают вследствие активности клеток, обладающих автоматией (пейсмекерных клеток), которые отличаются по электрофизиологическим свойствам от других мышечных клеток. В них появляются пейсмекерные потенциалы, деполяризующие мембрану до критического уровня, что вызывает возникновение потенциала действия.

Особенностью гладких мышц является их высокая чувствительность к медиаторам, которые оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетилхолина на препарат мышцы толстой кишки частота ПД возрастает. Вызываемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее сокращение. Норадреналин, напротив, гиперполяризует мембрану, снижая частоту ПД и величину тетануса.

Возбуждение гладкомышечных клеток вызывает повышение концентрации кальция в саркоплазме, что активирует сократительные структуры. Так же как сердечная и скелетная мышцы, гладкая мышца расслабляется при снижении концентрации ионов кальция. Расслабление гладких мышц происходит медленнее, так как удаление ионов кальция замедлено.

Физиология синапсов

Термин «синапс» был введен Ч. Шеррингтоном. Синапсом называется функциональное соединение между нервной клеткой и другими клетками. Синапсы – это те участки, где нервные импульсы могут влиять на деятельность постсинаптической клетки, возбуждая или тормозя ее. Существуют две разновидности синапсов: электрические и химические. В химическом синапсе выделяется медиатор, генерирующий потенциалы на постсинаптической мембране, а в электрическом от пресинаптического нейрона к постсинаптическому идет электрический ток.

Электрические синапсы.

Этим синапсам свойственны очень узкая синаптическая щель и очень низкое удельное сопротивление пре- и постсинаптических мембран, что обеспечивает прохождение локальных электрических токов. Низкое сопротивление связано с наличием каналов, пересекающих обе мембраны, т. е. идущих из клетки в клетку (щелевой контакт). Каналы образуются белковыми молекулами контактирующих мембран, которые соединяются комплементарно. Ток, вызванный пресинаптическим потенциалом действия, раздражает постсинаптическую мембрану, где возникает ВПСП, а затем и потенциал действия. Электрические синапсы формируются, как правило, между клетками одного типа (например, между клетками сердечной мышцы).

Химические синапсы

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам: периферические (нервно-мышечные, нейросекреторные, рецепторно-нейрональные); центральные (аксосоматические, аксодендритные, аксоаксональные, соматодендритные, соматосоматические); по знаку их действия – возбуждающие и тормозящие; по медиатору, который осуществляет передачу, – холинергические, адренергические, серотонинергические, глицинергические и т. д.

Синапс состоит из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели. Особенностью постсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору, и наличие хемозависимых ионных каналов. Возбуждение передается с помощью медиаторов (посредников). Медиаторы – это химические вещества, которые в зависимости от их природы делятся на следующие группы: моноамины (ацетилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота – ГАМК, глутаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин и др.). Медиатор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с по-мощью аксонального транспорта, либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезироваться в синаптических терминалях из продуктов его расщепления.

Когда к окончанию аксона приходит ПД и пресинаптическая мембрана деполяризуется, ионы кальция начинают поступать из внеклеточной жидкости внутрь нервного окончания (рис. 8). Кальций активирует перемещение синаптических пузырьков к пресинаптической мембране, где они разрушаются с выходом медиатора в синаптическую щель. В возбуждающих синапсах медиатор диффундирует в щели и связывается с рецепторами постсинаптической мембраны, что приводит к открытию каналов для ионов натрия, а следовательно, к ее деполяризации – возникновению возбуждающего постсинаптического потенциала (ВПСП). Между деполяризованной мембраной и соседними с ней участками возникают местные токи. Если они деполяризуют мембрану до критического уровня, то в ней возникает потенциал действия. В тормозных синапсах медиатор (например, глицин) аналогичным образом взаимодействует с рецепторами постсинаптической мембраны, но открывает в ней калиевые и/или хлорные каналы, что вызывает переход ионов по концентрационному градиенту: калия из клетки, а хлора – внутрь клетки. Это приводит к гиперполяризации постсинаптической мембраны – возникновению тормозного постсинаптического потенциала (ТПСП).

10
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело