Выбери любимый жанр

Занимательно о космологии - Томилин Анатолий Николаевич - Страница 39


Изменить размер шрифта:

39

Сколько пришлось ему передумать, прежде чем он отважился заявить об этом с трибуны, прежде чем в результате трудной и мучительной работы мысли открылся ему удивительный путь от попытки доказательства пятого постулата Эвклида к неведомому. Путь, который привел его к открытию нового мира с новой системой измерения — новой геометрией.

«…Изложение всех моих исследований в надлежащей связи потребовало бы слишком много места и представления совершенно в новом виде всей науки…»

Ход рассуждений докладчика действительно чрезвычайно сложен, хотя и строго логичен. Размышляя над возможностями доказательства пятого постулата Эвклида, Лобачевский подумал: а не попытаться ли идти от противного? Предположим, мы оставим четыре начальных постулата в неприкосновенности и отбросим пятый? Или еще лучше, отбросим пятый постулат и потребуем, что через точку, находящуюся вне прямой, можно провести не одну, а целый пучок прямых, параллельных данной? И на новой системе аксиом попытаемся построить новую геометрию… Очевидно, что труд сей должен привести к одному из двух:

либо, если пятый постулат является следствием первых четырех, новая система где-то придет к абсурду, так как строится она на предположении, противоречащем следствию;

либо, если логического противоречия в новой геометрии не окажется, это будет служить доказательством того, что пятый постулат совершенно не зависит от остальных.

Тогда новая система взглядов явится геометрией, описывающей некий воображаемый, отличный от Эвклидова, мир. Мир, в котором через точку, лежащую вне прямой, можно провести множество прямых, не пересекающихся с данной… Лобачевский все еще пробует пояснить ход своих мыслей и переходит к следствиям, вытекающим из эвклидовых постулатов.

«В новой геометрии два только предложения возможны — продолжает оратор, не обращая внимания на созревшее у слушателей отчетливое недоумение, — или сумма трех углов во всяком прямолинейном треугольнике равна двум прямым углам — это предположение составит обыкновенную геометрию; или во всяком прямолинейном треугольнике эта сумма менее двух прямых, и это последнее предположение служит основанием особой геометрии, которой я дал название „воображаемой геометрии“».

Коллеги перешептываются, улыбаются, не понимая, зачем профессору Лобачевскому эта чушь, зачем понадобилось ниспровергать существующий порядок его величества здравого смысла. Эх, молодость, молодость… А ведь разумен, энергичен. Ну ничего, остепенится, оставит глупости…

Его даже не пытались понять. Впрочем, может быть, не могли?.. Может быть, перед нами обычная трагедия гения — человека, идущего впереди своей эпохи?.. Особенно нелепо звучал для математиков вывод Лобачевского о том, что в «воображаемой геометрии» угол треугольника зависел от длины его сторон… Эго уже «не лезло ни в какие ворота». Разве что доказывало полную нелепость развиваемых взглядов. Ведь любая сторона треугольника — отрезок. Отрезок можно измерить. Можно дюймами, можно вершками, аршинами, верстами, наконец, метрами или километрами, если господину Лобачевскому так нравятся меры длины, введенные революционной Францией. А что такое угол? Отвлеченная величина, измеряемая градусами или радианами. Какая же связь может существовать между несоизмеримыми разнородными величинами?

Занимательно о космологии - i_057.png

Нет, в 1826 году идеи Лобачевского не нашли ни сочувствия, ни понимания у современников. Они не были наглядны! Вот если бы он начертил пресловутый треугольник с углами, сумма которых была меньше 180°, если бы он дал пощупать пальцами кусок плоскости, на которой реализуются четыре постулата Эвклида и пятый — Лобачевского, если бы они, современники, смогли провести на этой плоскости с отрицательной кривизной карандашом линию, которая действительно была бы кратчайшим расстоянием между двумя точками… Тогда они, может быть, поверили бы. Может быть… Потому что достаточно вспомнить первые телескопические открытия Галилея, чтобы представить себе, какую борьбу должно совершить новое, дабы получить признание. Впрочем, консерватизм — это не только отрицательное качество, присущее обществу. Консерватизм — это своего рода антибиотик, предохраняющий общество от незрелых или кратковременных идей. Действительно, великие идеи все равно пробивают себе дорогу.

Год спустя после доклада на заседании отделения Николая Ивановича Лобачевского избрали ректором университета. И с тех пор он девятнадцать лет бессменно, четыре раза пройдя через перевыборы, стоял у кормила Казанского университета. Студенты, особенно математики, обожали своего ректора. За внешней хмуростью молодежь безошибочно угадывала большое и доброе сердце. Сколько анекдотов ходило о ректоре в студенческой среде.

Однажды в книжной лавке Николай Иванович обратил внимание на молоденького продавца, увлеченного чтением. Книжка показалась ему знакомой. Он подошел ближе. Действительно, в руках юноши был математический трактат. Сколько трудностей пришлось преодолеть Лобачевскому, прежде чем способный юноша И. Больцани, так звали продавца, поступил в университет. Ректор не ошибся. Молодой человек с блеском окончил курс обучения и стал профессором физики Казанского университета. Причем случай с Больцани был далеко не единственным. Ректор много помогал питомцам своего университета, не требуя ни наград, ни благодарностей.

В 1829 году основные результаты работы Лобачевского появились в «Казанском вестнике». Опубликование не принесло Николаю Ивановичу радости. Теперь над ним открыто смеялись уже не только коллеги по Казанскому университету. Петербургская академия устами уважаемого своего члена академика Остроградского дала отрицательный отзыв его работе. Говорят, почтенный академик так выразился о казанском профессоре: «Лобачевский — недурной математик, но, если надобно показать ухо, он непременно покажет его сзади, а не спереди».

Лобачевский не сдается. Он пишет статьи на немецком, французском языках, популяризируя взгляды неэвклидовой геометрии. Одиноким гигантом идет он к цели, которая была видна лишь ему одному. Идет, опустив забрало, чтобы стрелы, пускаемые в него лилипутами, по выражению одного из учеников, не уязвляли.

Но стрелы уязвляли. Ведь и гений — человек! Из той же плоти и крови. Что поделать, если глаза его зорче, чем у остальных людей. Если разум могущественнее.

Общество, в котором жил Лобачевский, заставляло жестоко расплачиваться своих членов, не желающих подходить под стандарт. Не поняли окружающие и талантливого венгерского математика Яноша Больяи, пришедшего некоторое время спустя к взглядам, аналогичным взглядам Лобачевского. Некоторые социологи сегодня считают, что в этом находит выражение закон самосохранения общества. Гений — всегда протест. Нельзя сделать новый шаг, не разметав устоев условностей, накопленных обществом. «Воображаемая геометрия» была вызовом здравому смыслу. И ощетинившийся обыватель принял бой. В реакционном журнале «Сын Отечества», который редактировал печальной памяти Ф. Булгарин, появляется издевательская анонимная рецензия… «Воображаемая геометрия» Лобачевского раздражала не только математиков.

Вспомним эпоху. Мало того, что постулаты Эвклида почитались священными и неприкосновенными истинами. В философии царили взгляды Иммануила Канта, отошедшего от материализма молодости. Кант считал, что пространство и время не являются объективно-реальными, не существуют в мире «вещей в себе». По его мнению, пространство и время не более чем формы чувственного созерцания. Так сказать, это формы, упорядочивающие любые ощущения, получаемые от реального мира. Таким образом, не принадлежа к объективному миру, существующему независимо от человека, пространство и время являются лишь созданиями человеческого разума. А следовательно, и законы геометрии люди могут устанавливать не из опыта, а исходя из собственных представлений. Представления же человека о пространстве зафиксированы непоколебимыми постулатами Эвклида. Подобный ход рассуждений привел философа к выводу о непреложности законов геометрии и абсолютном характере пространства и времени.

39
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело