Путешествие к далеким мирам - Гильзин Карл Александрович - Страница 51
- Предыдущая
- 51/95
- Следующая
И не потому, что наука не знает двигателя, способного разогнать корабль до нужной невиданной скорости. Такой двигатель, единственный в своем роде, известен — это фотонная ракета (подробнее о ней рассказано в главе 18). Фотонный двигатель создает реактивную тягу в результате истечения из него не вещества, а квантов энергии, фотонов. Правда, для создания фотонного двигателя потребуется совершить решающий скачок вперед в искусстве использовать сокровенные запасы энергии атомных ядер. Понадобится решение и других задач феноменальной сложности, к которым пока еще даже неизвестно как и подойти. Но фотонная ракета будет создана, это дело лишь времени.
Однако и после этого главная трудность осуществления подобных межзвездных полетов будет все еще впереди — она заключается в поистине невероятных количествах энергии, которые для этого потребуются. Так, для осуществления упомянутого выше полета с непрерывным разгоном, а затем таким же непрерывным торможением в течение примерно 40 лет понадобится превратить в энергию вытекающих фотонов в фотонном двигателе корабля, даже если его вес ничтожно мал и равен всего 10 тоннам, вещество общим весом… 10 миллиардов тонн! Этой энергии хватило бы для расплавления всей оболочки земного шара на глубину в сотни километров.
Какое разочарование!.. Открывшиеся на миг ворота к звездам безжалостно захлопнулись. По-прежнему путь к мыслящим существам на других планетах кажется достижимым ценой жизни многих поколений звездоплавателей, которые не увидят ничего, кроме тесных стен корабля. Ну что ж, если этот путь единственный, то и он, конечно, будет использован.
Но единственный ли все же это путь? Разве не казалось так во многих других случаях, когда человеческий гений находил решение неразрешимых на первый взгляд задач? Не считалось ли совсем еще недавно, что цепи земного тяготения нерасторжимы?
Почему, в частности, все запасы «фотонного» топлива должны находиться на самом межзвездном корабле? Ведь как ни «пусто» межзвездное пространство, в нем плавают отдельные частицы вещества.[85] Разве не может «питаться» ими прожорливая фотонная ракета? При колоссальной, околосветовой скорости движения корабля он будет встречать каждое мгновение не так уже мало этих частиц. Огромный, площадью в сотни квадратных метров, заборник фотонного двигателя будет заглатывать все встречные частицы вещества, а затем этот своеобразный фотонно-прямоточный двигатель «переварит» их в фотоны для излучения с целью создания движущей силы. Однако даже в такой гигантский заборник двигателя за каждую секунду движения корабля попало бы всего несколько миллиграммов межзвездного вещества (так оно разрежено), если бы не все те же эффекты теории относительности — в действительности это количество будет неизмеримо большим. А ведь существуют в мировом пространстве и колоссальные газопылевые туманности и могучие реки космического излучения, где плотность материи значительно выше.
Правда, встреча, точнее — столкновение, корабля с частицами вещества при такой скорости опаснее самого вредного радиоактивного излучения, защита от него потребует экранов толщиной в десятки сантиметров. Что же говорить о столкновении с метеорным телом, в результате которого корабль попросту мгновенно испарится?
На пути осуществления межзвездного полета встанут и другие, еще, может быть, даже неизвестные трудности, однако мы ни на минуту не сомневаемся, что люди сумеют протянуть руку своим сотоварищам из далеких миров…
Но возвратимся к более реальным перспективам астронавтики — тем задачам, которые ей предстоит решать в течение ближайших десятилетий, — к полету на планеты нашей солнечной системы.
При полетах на планеты, в отличие от полета на Луну, межпланетный корабль должен передвигаться на значительные расстояния в поле солнечного тяготения, так как он при этом сильно удаляется от Солнца или приближается к нему. В этом случае притяжением к Солнцу уже нельзя пренебрегать. На преодоление солнечного тяготения приходится затрачивать значительную энергию, и это может сильно усложнить полет на планеты по сравнению с полетом на Луну. Но главная трудность такого полета — его большая продолжительность, если речь идет о полете с людьми. Только постепенно, осторожно — по мере изучения всех особенностей полета в мировом пространстве и, пожалуй, главным образом его влияния на человека — подобные полеты смогут становиться все более дальними, и межпланетные корабли будут забираться все дальше в глубь околосолнечного пространства.
Наложение полей тяготения Земли и планеты, к которой совершается полет, практически отсутствует, и с ним можно не считаться. Эти поля не простираются на такие большие расстояния. Можно считать, что притяжение к Земле исчезает на расстояниях от нее, превышающих 800 тысяч — 1 миллион километров, так оно там мало. Гиря, которая весит на Земле 1 килограмм, весила бы на таком расстоянии от Земли около 0,05 грамма, то есть примерно в 20 тысяч раз меньше.
Полет на какую-нибудь планету состоит поэтому как бы из трех различных участков: а) сравнительно небольшого участка полета в поле тяготения Земли; б) обычно тоже небольшого участка полета в поле тяготения планеты и в) разделяющего их, основного по протяженности, участка, где сказывается только сила притяжения к Солнцу.
Точное определение количества топлива, необходимого для совершения какого-либо межпланетного полета, то есть определение соответствующего значения идеальной скорости, в настоящее время весьма затруднительно — общего решения еще не найдено, и ответ можно получить, лишь производя многочисленные, сложные расчеты на математических машинах. Поэтому приходится ограничиваться приближенными подсчетами величины идеальной скорости. Однако они дают сравнительно точные результаты, по крайней мере, для того, чтобы выяснить вопрос о возможности или невозможности того или иного полета при современном уровне развития реактивной техники.
Если рассматривается полет пассажирского межпланетного корабля от Земли к какой-либо планете с посадкой на нее, а затем обратно, то, очевидно, при определении идеальной скорости нужно учесть затраты энергии на следующие основные цели:
1. Преодоление поля земного тяготения. Соответствующая этому идеальная скорость равна скорости отрыва от Земли.
2. Сообщение кораблю некоторой скорости вне поля земного тяготения. Это необходимо как для того, чтобы стал возможен полет к цели, так и для сокращения длительности полета. При малой скорости полета в поле солнечного тяготения на основном участке пути полет будет длиться чрезвычайно долго в связи с огромными расстояниями, которые при этом должны быть пройдены.
3. Преодоление поля тяготения планеты дважды — при торможении корабля на посадке, если планета не обладает атмосферой, которая могла бы быть использована для этой цели, и при обратном взлете.
4. Выравнивание скорости корабля со скоростью планеты, а при возвращении — со скоростью Земли, так как в общем случае эти скорости при встрече будут различными.
Кроме того, должны быть учтены затраты энергии, связанные с преодолением сопротивления атмосферы, потерями скорости корабля при наборе высоты или посадке с работающим двигателем, маневрированием, ошибками в пилотировании и другие.
Вся эта необходимая энергия должна быть запасена на корабле при взлете, если не рассчитывать на использование в полете каких-либо внешних источников энергии, например энергии Солнца, или на заправку в полете с промежуточных баз, искусственных или естественных.
Запас энергии на корабле при его взлете состоит не только из энергии топлива, находящегося в баках корабля. Корабль обладает весьма значительной кинетической энергией, поскольку он вместе с Землей мчится вокруг Солнца по ее орбите, обладая скоростью примерно 29,8 километра в секунду. Кроме того, он обладает и относительно небольшой кинетической энергией в результате вращения вокруг земной оси. При правильно выбранном направлении полета корабля эта кинетическая энергия может быть использована, и, конечно, она должна быть использована.
85
Установлено, что, помимо разреженной космической пыли, в межзвездном пространстве плавают атомы водорода, гелия, кальция, натрия, титана, а также другие атомы и даже молекулы.
- Предыдущая
- 51/95
- Следующая