Выбери любимый жанр

Для юных математиков. Веселые задачи - Перельман Яков Исидорович - Страница 20


Изменить размер шрифта:

20

Решения задач №№ 12, 13, 14 и 15

показаны на чертежах 10-м, 11-м, 12-м, 13-м, 14-м.

Для юных математиков. Веселые задачи - _120.jpg
Рис. 10.

Для юных математиков. Веселые задачи - _121.jpg
Рис. 11.

Для юных математиков. Веселые задачи - _122.jpg
Рис. 12.

Для юных математиков. Веселые задачи - _123.jpg
Рис. 13.

Для юных математиков. Веселые задачи - _124.jpg
Рис. 14.

Решение задачи № 16

Для юных математиков. Веселые задачи - _125.jpg
Рис. 15.

Решение задачи № 17

показано на чертеже 16-м. Это равносторонний шестиугольник (но не правильный – углы неравны).

Для юных математиков. Веселые задачи - _126.jpg
Рис. 16.

Решение задачи № 18

показано на чертеже 17-м. Площадь левой фигуры заключает два квадрата, каждый со сторонами в 1 спичку. Правый четырехугольник представляет собою параллелограмм, высота которого AB = 1 1/2спичкам. Площадь его, по правилам геометрии, равна его основанию, умноженному на высоту: 4x1 1/2 = 6, – т. е. втрое больше площади левого четырехугольника.

Для юных математиков. Веселые задачи - _127.jpg
Рис. 17.

Решение задач №№ 19 и 20

наглядно показано на прилагаемых чертежах 18 и 19.

Для юных математиков. Веселые задачи - _128.jpg
Рис. 18.

Для юных математиков. Веселые задачи - _129.jpg
Рис. 19.

Глава III Вес и взвешивание

ЗАДАЧА № 21

Вес бревна

Круглое бревно весит тридцать килограммов. Сколько весило бы оно, если бы было втрое толще, но вдвое короче?

ЗАДАЧА № 22

Десятичные весы

Сто килограммов железных гвоздей уравновешены на десятичных весах железными гирями. Весы затопило водой. Сохранили ли они равновесие и под водой?

ЗАДАЧА № 23

Вес бутылки

Бутылка, наполненная керосином, весит 1000 граммов. Та же бутылка, наполненная кислотой, весит 1600 граммов. Кислота вдвое тяжелее керосина.

Сколько весит бутылка?

ЗАДАЧА № 24

Брусок мыла

На одной чашке весов положен брусок мыла, на другой 3/4 такого же бруска и еще 3/4 килограмма. Весы в равновесии.

Для юных математиков. Веселые задачи - _130.jpg

Рис. 20. Сколько весит брусок мыла?

Сколько весит целый брусок мыла?

Постарайтесь решить эту несложную задачу устно, без карандаша и бумаги.ЗАДАЧА № 25 Кошки и котята

Из прилагаемого рисунка 21-го вы усматриваете, что

4 кошки и 3 котенка весят 15 килограммов, а

3 кошки и 4 котенка весят 13 килограммов.

Для юных математиков. Веселые задачи - _131.jpg
Рис. 21. Сколько весят кошка и котенок порознь?

Сколько же весит каждая кошка и каждый котенок в отдельности?

Постарайтесь и эту задачу решить устно.ЗАДАЧА № 26 Раковина и бусины

Рисунок 22-й показывает вам, что 3 детских кубика и 1 раковина уравновешиваются 12-ю бусинами, и что, далее, 1 раковина уравновешивается 1 кубиком и 8-ю бусинами.

Сколько же бусин нужно положить на свободную чашку весов, чтобы уравновесить раковину на другой чашке?

Для юных математиков. Веселые задачи - _132.jpg

Рис. 22. Задача о раковине и бусинах.ЗАДАЧА № 27 Вес фруктов

Вот еще задача в том же роде. Рисунок 23-й показывает, что

3 яблочка и 1 груша весят столько, сколько 10 персиков, а

6 персиков и 1 яблочко весят столько, сколько 1 груша.

Сколько же персиков надо взять, чтобы уравновесить одну грушу?

Для юных математиков. Веселые задачи - _133.jpg
Рис. 23. Задача о груше и персиках.

ЗАДАЧА № 28 Сколько стаканов?

На рисунках 24-а и 24-б вы видите, что бутылка и стакан уравновешиваются кувшином; бутылка сама по себе уравновешивается стаканом и блюдцем; два кувшина уравновешиваются тремя блюдцами.

Для юных математиков. Веселые задачи - _134.jpg
Рис. 24-а. Задача о стаканах и бутылке.

Для юных математиков. Веселые задачи - _135.jpg
Рис. 24-б. Чем уравновесить бутылку?

Сколько надо поставить стаканов на свободную чашку весов, чтобы уравновесить бутылку? ЗАДАЧА № 29 Гирей и молотком

Надо развесить 2 килограмма сахарного песку на 200 граммовые пакеты. Имеется только одна 500-граммовая гиря, да еще молоток, весящий 900 граммов.

Для юных математиков. Веселые задачи - _136.jpg
Рис. 25. Затруднение при развешивании.

Как получить все 10 пакетов, пользуясь этой гирей и молотком? ЗАДАЧА № 30 Задача Архимеда

Самая древняя из головоломок, относящихся к взвешиванию – без сомнения, та, которую древний правитель сиракузский Гиерон задал знаменитому математику Архимеду.

Предание повествует, что Гиерон поручил мастеру изготовить венец для одной статуи и приказал выдать ему необходимое количество золота и серебра. Когда венец был доставлен, взвешивание показало, что он весит столько же, сколько весили вместе выданные золото и серебро. Однако правителю донесли, что мастер утаил часть золота, заменив его серебром. Гиерон призвал Архимеда и предложил ему определить, сколько золота и сколько серебра заключает изготовленная мастером корона. Архимед решил эту задачу, исходя из того, что чистое золото теряет в воде 20-ю долю своего веса, а серебро – 10-ю долю.

Если вы желаете попытать свои силы на подобной задаче, примите, что мастеру было отпущено 8 килограммов золота и 2 кг серебра, и что, когда Архимед взвесил корону под водой, она весила не 10 кг, а всего 9 1/4 кг. Попробуйте определить по этим данным, сколько золота утаил мастер. Венец предполагается изготовленным из сплошного металла, без пустот.

РЕШЕНИЯ ЗАДАЧ О ВЕСАХ И ВЗВЕШИВАНИИ (№№ 21–30)Решение задачи № 21

Обыкновенно отвечают, что бревно, увеличенное в толщину вдвое, но вдвое же укороченное, не должно изменить своего веса Однако это не верно. От увеличения поперечника вдвое объем круглого бревна увеличивается вчетверо; от укорочения же вдвое объем уменьшается всего в два раза. Поэтому толстое короткое бревно должно быть вдвое тяжелее длинного тонкого, т. е. весить 60 килограммов.Решение задачи № 22

При погружении в воду железная вещь (сплошная) теряет 8-ю долю своего веса [12] . Поэтому гири под водой будут иметь 7/8 прежнего веса, гвозди – также 7/8 своего прежнего веса. И так как гири были в 10 раз легче гвоздей, то и под водой они легче их в 10 раз. Следовательно, десятичные весы останутся и под водой в равновесии.Решение задачи № 23

Из условия задачи мы знаем, что, во-первых,

вес бутылки + вес керосина = 1000 граммов.

А во-вторых, так как кислота вдвое тяжелее керосина, мы знаем, что

вес бутылки + двойной вес керосина = 1600 граммов.

Отсюда ясно, что разница в весе 1600–1000, т. е. 600 граммов, есть вес керосина в объеме бутылки. Но бутылка вместе с керосином весит 1000граммов; значит, бутылка весит 1000-600 = 400 граммов.

Действительно: вес кислоты (1600-400 = 1200 гр.) оказывается вдвое больше веса керосина.Решение задачи № 24

3/4 бруска мыла + 3/4 килограмма весят столько, сколько целый брусок. Но в целом бруске содержится 3/4 бруска + 1/4 бруска. Значит, 1/4 бруска весит 3/4 килограмма. И следовательно, целый брусок весит в четыре раза больше, чем 3/4 кг, т. е. 3 килограмма.Решение задачи № 25

Сравнивая оба взвешивания, легко видеть, что от замены одной кошки одним котенком вес груза уменьшился на 15–13, т. е. на 2 кг. Отсюда следует, что кошка тяжелее котенка на 2 кг. Зная это, заменим при первом взвешивании всех четырех кошек котятами: у нас будет тогда всех 4+3 = 7 котят, а стрелка весов вместо 15 килограммов покажет на 2x4, т. е. на 8 кг меньше. Значит, 7 котят весят 15-8 = 7 килограммов.

20
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело