Выбери любимый жанр

(Не)совершенная случайность. Как случай управляет нашей жизнью - Млодинов Леонард - Страница 12


Изменить размер шрифта:

12

Глава 3. Продираясь через дебри вероятностей

Во второй половине XVI в. и до 1576 г. на улицах Рима можно было встретить странно одетого старика с неровной походкой, который время от времени что-то кричал, адресуя свои вопли непонятно кому. Когда-то он был знаменит по всей Европе – известный астролог, врач, лечивший придворную аристократию, профессор кафедры медицины в Университете Павии. Ему принадлежат изобретения, актуальные и поныне, в том числе первый замок с секретом и карданный вал, используемый в наше время в автомобилестроении. Он опубликовал 131 книгу по самым разным темам в философии, медицине, математике и прочих науках. Однако к 1576 г. он превратился в человека с богатым прошлым и без будущего, доживая свой век в забвении и унизительной бедности. В конце лета того года он в последний раз сел за стол и написал оду своему любимому сыну, старшему, которого казнили шестнадцать лет назад, в возрасте двадцати шести лет. Старик умер 20 сентября, когда до юбилея – семидесяти пяти лет – оставалось всего несколько дней. Он пережил двух из трех своих детей; пока он умирал, его единственный оставшийся в живых сын поступил на службу Инквизиции – пытать еретиков. Такое теплое местечко досталось ему в качестве награды за свидетельствование против своего же отца.

Перед смертью Джероламо Кардано сжег 170 неопубликованных рукописей[53]. Те, кто просматривал потом вещи Кардано, нашли 111 сохранившихся рукописей. Одна из них, написанная несколько десятилетий тому назад, выглядела так, будто к ней не раз возвращались – это было исследование из тридцати двух главок. Называлось оно «Трактат об азартных играх» и было первым письменным трудом по теории вероятностей. Люди тысячелетиями сталкивались с различными факторами неопределенности, причем это были не только азартные игры. Получится ли у меня перейти пустыню до того, как кончится вся вода? Опасно ли оставаться под скалой, когда землю трясет вот как прямо сейчас? Означает ли улыбка этой пещерной девчонки, которая любит рисовать бизонов на скалах, что я ей приглянулся? И все же Кардано первым дал обоснованный анализ того направления, в котором развиваются игры или другие неопределенные процессы. Его проникновение в суть механизма действия вероятности обернулось принципом, который мы назовем законом пространства элементарных событий. Закон этот представил новую идею и новую методологию, он лег в основу математического описания неопределенности, которым стали пользоваться в последующие столетия. Методология проста, это аналог законов вероятности, которыми пользуются при погашении чековой книжки. Однако, применяя этот простой метод, мы сможем рассмотреть многие вопросы системно, в то время как иной, несистемный подход породил бы лишь путаницу. Чтобы на деле показать и применение, и силу закона, рассмотрим одну задачу. Ее постановка проста, да и решение не требует знаний высшей математики, но об нее наверняка споткнулось больше народу, чем о любую другую задачу за всю историю изучения случайности.

(Не)совершенная случайность. Как случай управляет нашей жизнью - i_001.png

Если верить газетным публикациям, рубрика «Спросите Мэрилин» журнала «Парад» была просто-напросто обречена на феноменальный успех. Эта начатая еще в 1986 г. колонка вопросов и ответов, размноженная в 350 газетах общим тиражом в 36 млн, до сих пор привлекает читателей. Вопросы иногда оказываются не менее познавательными, чем ответы на них, это в своем роде опрос общественного мнения на тему того, что на уме у американцев. К примеру:

Почему при окончании торгов на фондовой бирже все встают и, улыбаясь, аплодируют независимо от того, поднялись за день акции или опустились?

Подруга беременна близнецами и знает, что оба будут мальчиками. Какова вероятность того, что хотя бы один младенец окажется девочкой?

Когда вы за рулем и наезжаете на мертвого скунса, почему вонь от него доносится до вас аж десять секунд спустя? Предположим, вы на самом деле не переехали скунса.

Судя по всему, американцы – народ весьма практичный. Следует отметить, что в каждом из вышеприведенных вопросов содержится определенная научная или в частности математическая составляющая, черта, присущая многим из вопросов, на которые в колонке дан ответ.

Кто-нибудь, особенно тот, кто хоть немного знает о математике и науке вообще, может спросить: «А вообще кто она такая, эта всезнающая Мэрилин?» Так вот, Мэрилин это Мэрилин вос Савант, а знаменита она тем, что уже несколько лет значится в «Книге рекордов Гиннесса» как человек с самым высоким в мире коэффициентом интеллекта, равным 228. Также она известна тем, что замужем за Робертом Джарвиком, изобретателем искусственного сердца Джарвика. Однако иногда знаменитые люди, несмотря на все то, чего смогли добиться, остаются в памяти совсем по другим причинам, о которых им самим очень хотелось бы забыть («У меня не было связи с этой женщиной»). Так и с Мэрилин: ее наибольшая популярность связана с ответом на вопрос, который был опубликован в воскресном выпуске в сентябре 1990 г. (я чуть изменил формулировку):

Предположим, участники телевикторины должны выбрать одну из трех дверей. За одной дверью находится машина, за двумя другими – по козе. Участник выбирает дверь, а ведущий, которому известно, что находится за каждой из дверей, открывает одну из оставшихся, за которой коза. Затем он говорит участнику: «Итак, вы смените дверь или останетесь на месте?» Вопрос в следующем: выгодно ли участнику сменить дверь?[54]

Вопрос навеян телевикториной «На что спорим?», которая шла с 1963 по 1976 гг., а также в несколько измененном виде с 1980 по 1991 гг. Немалую привлекательность передаче сообщали симпатичный, приятный ведущий Монти Холл и его помощница – соблазнительно одетая Кэрол Меррилл, в 1957 г. завоевавшая титул «Мисс Азуса[55]».

Должно быть, автор передачи удивился, когда из 4.500 эпизодов за почти двадцать семь лет вещания именно вопрос на тему математической вероятности оказался самым ярким из всего, чтобы прозвучало в программе. Тема, что называется, обессмертила и Мэрилин, и телевикторину: читатели буквально забросали редакцию издания, в котором печаталась колонка Мэрилин. Вообще-то, вопрос на первый взгляд незамысловатый. Остаются две двери – откроешь одну и выиграешь, откроешь другую и проиграешь, – так что очевидно: пойдешь ли ты на это или нет, твои шансы выиграть равны 50/50. Куда уж проще? Однако Мэрилин в своей колонке ответила: имеет смысл сменить дверь.

Несмотря на пресловутую инертность общества там, где речь заходит о математике, читатели колонки отреагировали так, будто Мэрилин предлагала нечто ужасное, скажем, вернуть Калифорнию Мексике. В ответ на ее отрицание очевидного последовал шквал писем: по словам Мэрилин, она получила что-то около 10 тыс. откликов[56]. Если спросить американцев, согласны ли они, что растения выделяют в воздух кислород, что скорость света выше скорости звука, что радиоактивное молоко не станет безопасным для здоровья после кипячения, то в каждом случае число несогласных будет двузначным (13 %, 24 % и 35 % соответственно)[57]. Но в данном вопросе американцы продемонстрировали единодушие: 92 % заявили о том, что Мэрилин ошиблась.

Многие читатели почувствовали себя обманутыми в лучших чувствах. Как могла та, чьим ответам по самым разным вопросам они верили, споткнуться на таком простом вопросе? Или ее ошибка типична как символ вопиющего невежества американцев? Мэрилин написали тысяча докторов наук, преподающих математику – они-то как раз и возмущались больше всех[58]. «Какая чушь!», писал один математик из Университета Джорджа Мейсона:

12
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело