Выбери любимый жанр

Истина и красота. Всемирная история симметрии. - Стюарт Йен - Страница 26


Изменить размер шрифта:

26

Честолюбие Серена в соединении с отсутствием здравого смысла привело к неприятным последствиям. Он выступил с заявлением, в котором обвинял двух членов Стортинга в несправедливом заключении в тюрьму управляющего металлургическим заводом, принадлежавшим одному из них. В результате таких нападок на их репутацию поднялся шум. Вскоре выяснилось, что управляющий не вызывал доверия, но Серен отказался извиняться. Впав в депрессию, несчастный запил и в конце концов допился до смерти. На похоронах вдова Серена Анна-Мари напилась до такого состояния, что затащила в постель своего любимого слугу. На следующее утро, когда к ней с визитом пришли официальные посетители, она принимала их в постели, лежа рядом со своим любовником. «Бедные мальчика мне их жаль», — писала их тетка.

В 1821 году Нильс закончил Кафедральную школу и отправился сдавать вступительные экзамен в университет Христиании (ныне Осло). Он получил максимальные оценки по арифметике и геометрии, а также хорошие оценки по остальной математике, но по всем другим предметам выступил ужасно. Он был теперь отчаянно беден, поэтому подал прошение о предоставлении ему бесплатного жилья и дров для отопления. Он также пытался получить субсидию, покрывающую расходы на проживание, и некоторые из профессоров, распознав его необычные способности, собрали деньги ему на стипендию. Получив такую поддержку, Нильс посвятил себя математике и решению уравнения пятой степени, на этот раз серьезно намереваясь обратить в успех свою неудачную первую попытку.

В 1823 году Нильс работал над эллиптическими интегралами — областью анализа, которой предстояло стать самым долговечным памятником своему создателю, превосходящим по важности даже его работы по уравнениям пятой степени. Он пытался также доказать Последнюю теорему Ферма, но не смог найти ни доказательства, ни опровержения, хотя ему удалось показать, что пример, опровергающий утверждение теоремы, может появиться только в области поистине гигантских чисел.

Летом того года он отправился на бал, познакомился там с молодой женщиной и пригласил ее на танец. После нескольких неудачных попыток начать оба они разразились смехом — ни один из них не имел ни малейшего представления о том, как танцуют. Женщину звали Кристин Кемп, но все называли ее Крелли; она была дочерью военного интенданта. Как и у Нильса, у нее не было денег, и на жизнь она зарабатывала частными уроками по всем предметам — от рукоделия до естественных наук. «Она некрасива, у нее рыжие волосы и веснушки, но она чудесная девушка», — писал Нильс. Они полюбили друг друга.

Эти события стимулировали занятия Нильса математикой. Ближе к концу 1823 года он доказал невозможность решения уравнения пятой степени — причем в отличие от прошедшего чуть мимо цели выстрела Руффини он не промахнулся. Доказательство, стратегия которого была схожа с использованной Руффини, но тактика совершеннее, не содержало пробелов. Исходно Нильс не знал о работе Руффини. Впоследствии он наверняка должен был с ней познакомиться, поскольку упоминает о ее неполноте. Но даже Нильс не смог точно указать то место, где в доказательстве Руффини таилась дыра, — и это несмотря на то, что его метод оказался ровно тем, что требовалось для заделки этой дыры.

Нильс и Крелли отпраздновали помолвку. Чтобы жениться на своей возлюбленной, Нильсу надо было получить работу, а это означало, что требовалось признание его талантов со стороны ведущих европейских математиков. Опубликовать свою теорию было бы недостаточно: медведя следовало ловить в его берлоге. А для этого требовалась некоторая сумма денег на путешествия.

После длительных переговоров университет Христиании согласился предоставить Нильсу достаточно средств, чтобы он смог отправиться с научным визитом в Париж, где ему предстояло встретиться с ведущими математиками мирового уровня. Готовясь к поездке, он решил, что ему понадобятся печатные экземпляры его лучшей работы. Он полагал, что доказательство невозможности решения уравнения пятой степени произведет впечатление на французских коллег. Но, к сожалению, все его работы были изданы по-норвежски, в малоизвестном журнале. Поэтому он решил, что необходимо частным образом издать свою работу по теории уравнений в переводе на французский. Заглавие ее звучало как «Мемуар по алгебраическим уравнениям, в котором доказана невозможность решения общего уравнения пятой степени». Чтобы сэкономить на расходах по изданию, Нильс оставил лишь выжимку из самого существенного в своем методе, так что печатный вариант уложился всего лишь в шесть страниц. Это было куда меньше пятисот, написанных Руффини, но в математике бывают случаи, когда краткость скорее затемняет идеи. Целый ряд логических деталей — которые в этой области играли определяющую роль — пришлось оставить за бортом. Работа представляла собой набросок, а не доказательство.

Нильс открыл ее словами «Математики в целом занимались задачей нахождения общего метода для решения алгебраических уравнений, и некоторые из них предпринимали попытки доказать, невозможность такого решения. Поэтому я смею надеяться, что математики благосклонно встретят эту статью, которая ставит своей целью заполнить пробел, существующий в теории уравнений». Надежда оказалась бесплодной. Хотя ему удалось посетить некоторых математиков в Париже и заручиться их согласием взглянуть на его статью, аргументация в ней была настолько сжатой, что большинство, вероятно, нашли ее непригодной для понимания. Гаусс не выбросил свой экземпляр, но так и не прочел его — когда статью нашли после его смерти, страницы в ней оставались неразрезанными.

Позднее, быть может осознав свою ошибку, Абель опубликовал два развернутых варианта своего доказательства, приведя в них больше подробностей. Узнав к этому времени о работах Руффини, он писал: «Первая попытка доказательства невозможности алгебраического решения общего уравнения была предложена математиком Руффини; но его мемуар настолько труден для понимания, что судить о верности его аргументами нелегко. Мне представляется, что его рассуждения не всегда удовлетворительны». Но, как и все остальные, он не указал, почему именно.

Руффини и Абель излагали ход своей мысли на формальном математическом языке своего времени, который не очень хорошо подходил для требовавшегося им стиля мышления. Математика имела тогда дело главным образом с конкретными, частными идеями, тогда как ключ к теории уравнений состоит в переводе рассуждений в более общие термины — те, которые относятся к структурам и процессам, а не к отдельным вещам. Таким образом, их идеи были сложны для современников по той причине, что выходили за рамки математического языка. Но даже для современных математиков использование терминологии того периода затруднило бы понимание.

К счастью, основные моменты их анализа можно ухватить, используя архитектурную метафору. Один из способов представить себе почти-доказательство Руффини, как и полное доказательство Абеля, состоит в том, чтобы представить себе строительство башни.

В этой башне по одной комнате на этаже, причем лестница связывает ее с комнатой этажом выше. В каждой комнате имеется большой мешок. Если открыть мешок, оттуда разлетаются миллионы алгебраических формул, заполняя весь этаж. На первый взгляд у этих формул нет никакой специальной структуры, и кажется, что их случайным образом понадергали из разных алгебраических текстов. Некоторые формулы короткие, некоторые длинные; некоторые простые, некоторые исключительно сложные. При более тщательном рассмотрении, однако, у них обнаруживаются родственные черты. Формулы в каждом мешке имеют массу общих свойств. У формул из мешка этажом выше другие общие свойства. Чем выше по башне мы поднимаемся, тем более сложными становятся формулы в мешках.

Мешок на первом этаже содержит все формулы, которые можно построить, взяв коэффициенты уравнения и складывая их друг с другом, вычитая, умножая, деля — снова и снова, сколько угодно раз. В мире алгебраических формул, коль скоро вы задались коэффициентами, все эти «безобидные» комбинации прилагаются, можно сказать, практически бесплатно.

26
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело