Выбери любимый жанр

Математика. Утрата определенности. - Клайн Морис - Страница 71


Изменить размер шрифта:

71

Осознание того, что любая дедуктивная система должна содержать неопределяемые понятия, которые можно интерпретировать как угодно, лишь бы вводимые объекты удовлетворяли аксиомам, подняло математику на новый уровень абстракции. Это весьма рано понял Герман Грассман, отметивший в своей «Теории линейной протяженности» (1844), что геометрия не сводится исключительно к изучению реального, физического, пространства. Геометрия — конструкция чисто математическая. Она применима для описания реального пространства, но отнюдь не исчерпывается этой своей интерпретацией. Творцы аксиоматики, работавшие позднее, Паш, Пеано и Гильберт, всячески подчеркивали абстрактность геометрии. Тем не менее, отчетливо сознавая существование неопределяемых понятий, смысл которых ограничен лишь аксиомами, Паш в своих работах мысленно следовал единому образцу геометрии. Пеано, знавший работы Паша, в статье от 1889 г. высказал мысль о возможности многих других интерпретаций геометрии. Гильберт в «Основаниях геометрии» (1899) [50] заявил, что, хотя мы используем такие слова, как точка, прямая, плоскость и т.д., вполне можно было бы говорить о пивных кружках, стульях и любых других предметах, лишь бы они удовлетворяли аксиомам. То, что одна дедуктивная система допускает множество интерпретаций, можно расценивать как весьма благоприятное обстоятельство, позволяющее расширить круг возможных приложений, но вместе с тем оно приводит, как мы увидим в дальнейшем (гл. XII), и к некоторым неприятным последствиям.

Паш великолепно понимал современную аксиоматику. Именно ему принадлежит замечание (важность которого в конце XIX в. не была по достоинству оценена) о том, что во всех случаях необходимо дать доказательство непротиворечивости любой рассматриваемой системы аксиом, т.е. доказательство того, что выбранная система аксиом не порождает противоречащих друг другу теорем. Проблема непротиворечивости возникла в связи с неевклидовыми геометриями и была для них удовлетворительно разрешена. Однако неевклидова геометрия оставалась для многих довольно непривычной областью математики. Что же касается таких старых фундаментальных ее разделов, как арифметика или евклидова геометрия, то всякие сомнения в их непротиворечивости казались чисто академическими. Тем не менее Паш считал необходимым установить непротиворечивость и этих систем аксиом. Ему вторил Фреге, писавший в «Основаниях арифметики» (1884):

Обычно поступают так, будто принятие постулатов само по себе достаточно для того, чтобы все постулаты выполнились. Мы постулируем, что операция вычитания, деления или извлечения корня всегда выполнима, и считаем, что этого вполне достаточно. Но почему мы не постулируем, что через любые три точки можно провести прямую? Почему мы не постулируем, что все законы сложения и умножения остаются в силе для комплексных чисел с тремя единицами точно так же, как они выполняются для вещественных чисел? Это происходит потому, что такого рода постулаты содержат противоречие. Прекрасно! Но тогда первое, что нам необходимо сделать, — это доказать непротиворечивость наших остальных постулатов. А пока это не будет сделано, вся строгость, к которой мы так стремимся, останется столь же зыбкой и призрачной, как лунное сияние.

Пеано и его школа в 90-х годах XIX в. также стали несколько серьезнее относиться к проблеме непротиворечивости. Пеано был уверен в том, что методы, позволяющие доказывать непротиворечивость аксиом, не замедлят появиться.

Над проблемой непротиворечивости математики вполне могли бы задуматься еще древние греки. Почему же она выступила на передний план лишь в конце XIX в.? Как мы уже говорили, создание неевклидовой геометрии в значительной мере способствовало осознанию того, что геометрия является творением человека и лишь приближенно описывает происходящее в реальном мире. При всех неоспоримых достоинствах этого описания его нельзя считать истинным в том смысле, что оно не адекватно внутренней структуре окружающего мира и, следовательно, не обязательно непротиворечиво. Движение за аксиоматизацию математики в конце XIX в. заставило математиков понять, сколь глубокая пропасть отделяет математику от реального мира. Каждая аксиоматическая система содержит неопределяемые понятия, свойства которых задаются только аксиомами. Смысл неопределяемых понятий не зафиксирован раз и навсегда, хотя интуитивно мы представляем себе, что такое точки или прямые. Разумеется, предполагается, что аксиомы выбраны так, чтобы задаваемые им свойства находились в согласии с теми, которые мы интуитивно с ними связываем. Но можем ли мы быть уверенными в том, что нам удалось выбрать аксиомы именно таким образом, что, формулируя их, мы не привнесли некоторое нежелательное свойство (или же оно следует из принятых нами аксиом), которое может привести к противоречию?

Паш отметил еще одну особенность аксиоматического метода. В любой области математики желательно, чтобы аксиомы были независимыми, т.е. чтобы любую из принятых аксиом нельзя было вывести из остальных, так как аксиома, выведенная из других, является уже не аксиомой, а теоремой. Метод доказательства независимости той или иной аксиомы состоит в указании интерпретации или построении модели, в которой все аксиомы, кроме проверяемой на независимость, выполняются, а проверяемая аксиома не выполняется. (Такая интерпретация не обязательно должна быть совместимой с отрицаниемпроверяемой аксиомы.) Так, для доказательства независимости аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии можно воспользоваться интерпретацией гиперболической неевклидовой геометрии, в которой выполняются все аксиомы евклидовой геометрии, кроме аксиомы о параллельных, а сама аксиома о параллельных не выполняется. Интерпретация, удовлетворяющая проверяемой аксиоме и противоположной аксиоме, не была бы непротиворечивой. Следовательно, прежде чем воспользоваться для доказательства независимости какой-либо аксиомы интерпретацией, или моделью, необходимо убедиться в том, что эта интерпретация, или модель, непротиворечива. Так, независимость аксиомы Евклида о параллельных была доказана на модели гиперболической евклидовой геометрии, реализуемой на поверхности в евклидовом пространстве.

В дальнейшем мы расскажем о сомнениях, неадекватностях и глубоких проблемах, которые породила аксиоматизация математики; однако в начале XX в. аксиоматический метод считался идеалом математической строгости. Никто не превозносил аксиоматический метод больше, чем Гильберт, ставший к тому времени признанным лидером мировой математики. В статье «Аксиоматическое мышление» (1918) он утверждал:

Все, что может быть предметом математического мышления, коль скоро назрела необходимость в создании теории, оказывается в сфере действия аксиоматического метода и тем самым математики. Проникая во все более глубокие слои аксиом… мы получаем возможность все дальше заглянуть в сокровенные тайны научного мышления и постичь единство нашего знания. Именно благодаря аксиоматическому методу математика, по-видимому, призвана сыграть ведущую роль во всем нашем знании.

Аналогичные мысли Гильберт высказывал и в 1922 г.:

Аксиоматический метод поистине был и остается подходящим и неоценимым инструментом, в наибольшей мере отвечающим духу каждого точного исследования, в какой бы области оно ни проводилось. Аксиоматический метод логически безупречен и в то же время плодотворен; тем самым он гарантирует полную свободу исследования. В этом смысле применять аксиоматический метод — это значит действовать, понимая, о чем идет речь. Если ранее, до аксиоматического метода, приходилось действовать наивно, слепо веря в существование определенных отношений, то аксиоматический метод устраняет подобную наивность, сохраняя все преимущества уверенности.

Возможно, создается впечатление, что математики приветствовали установление прочной, строгой основы своей науки. Однако математикам ничто человеческое не чуждо. И далеко не все математики с энтузиазмом приветствовали точную формулировку таких основных понятий, как иррациональное число, непрерывность, производная и интеграл. Многие не поняли новой терминологии и сочли точные определения своего рода причудами, отнюдь не обязательными для понимания математики и даже для строгих доказательств. Те, кто так считал, полагались на свою интуицию, несмотря на сюрпризы, преподнесенные открытием непрерывных, но не дифференцируемых функций и других логически правильных, но противоречащих интуиции математических объектов. Так, в 1904 г. Эмиль Пикар (1856-1941), говоря о строгости в теории дифференциальных уравнений с частными производными, заметил: «Истинная строгость плодотворна и этим отличается от другой строгости, чисто формальной и утомительной, бросающей тень на затрагиваемые ею проблемы». Шарль Эрмит (1822-1901) в письме к Томасу Яну Стильтьесу от 20 мая 1893 г. признавался: «С чувством непреодолимого отвращения я отшатываюсь от достойного всякого сожаления зла — непрерывных функций, не имеющих производных». Пуанкаре (1854-1912), с чьей философией математики нам предстоит познакомиться в следующей главе, жаловался; «В прежние времена новые функции вводились для того, чтобы их можно было применять. Ныне же строят функции, чтобы прийти в противоречие с выводами наших предшественников. Такие функции не годятся ни для чего иного».

71
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело