Выбери любимый жанр

Ткань космоса. Пространство, время и текстура реальности - Грин Брайан - Страница 60


Изменить размер шрифта:

60

То же самое происходит, конечно, при наших собственных повседневных наблюдениях окружающего мира. Мы никогда не видели, чтобы стул был и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мёртв. Понятие коллапса волновой функции присоединяется к нашему опыту путём постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределённости и сделать одну из множества потенциальных возможностей (частица здесь или частица там) действительной.

Загадка квантового измерения

Но почему проведение измерения экспериментатором заставляет волновую функцию коллапсировать? Фактически, действительно ли коллапс волновой функции происходит, и если он происходит, что реально происходит на микроскопическом уровне? Вызывает ли коллапс любое и всякое измерение? Когда происходит коллапс и как долго длится? Поскольку в соответствии с уравнением Шрёдингера волновая функция не коллапсирует, какое уравнение описывает вторую стадию квантовой эволюции и как это новое уравнение свергает с престола шрёдиигеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно в смысле обсуждения стрелы времени, в то время как уравнение Шрёдингера, которое управляет первой стадией, не делает различий между прямым и обратным направлением во времени, не вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после измерения? То есть, не вводит ли квантовая механика, включая её связь с повседневным миром через измерения и наблюдения, стрелу времени в основные законы физики? В конце концов, мы обсуждали, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике, и под прошлым мы понимали то, что происходит перед тем, как имеет место определённое квантовое измерение. Поэтому не устанавливают ли измерения, воплощённые в коллапсе волновой функции, асимметрию между прошлым и будущим: между тем, что было до измерения, и тем, что будет после?

Эти вопросы упорно сопротивляются полному решению, и они остаются источником противоречий. Тем не менее спустя десятилетия успехов предсказательную мощь квантовой теории трудно скомпрометировать. Квантовая теория, включающая две стадии эволюции, хотя вторая стадия и остаётся таинственной и непонятной, правильно предсказывает вероятности результатов измерений. И эти предсказания подтверждаются повторением данного эксперимента снова и снова и проверкой частоты, с которой обнаруживаются те или иные результаты. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на второй стадии.

Но дискомфорт всегда рядом. И это не означает просто, что некоторые детали коллапса волновой функции не вполне определены. Проблема квантового измерения, как она называется, является проблемой, имеющей отношение к пределам и универсальности квантовой механики. Это нетрудно увидеть. Подход с двумя различными стадиями эволюции вводит пропасть между тем, что наблюдается (например, электрон, или протон, или атом), и экспериментатором, проводящим наблюдения. Перед тем как экспериментатор появляется на сцене, волновая функция радостно и спокойно эволюционирует в соответствии с уравнением Шрёдингера. Но когда экспериментатор вмешивается в процесс для проведения измерения, правила игры неожиданно меняются. Уравнение Шрёдингера отбрасывается в сторону и наступает коллапс второй стадии эволюции. Теперь, поскольку нет разницы между атомами, протонами и электронами, которые составляют экспериментатора и оборудование, которое он использует, и атомами, протонами и электронами, которые он изучает, так почему же имеется столь большое различие в том, как их трактует квантовая механика? Если квантовая механика является универсальной теорией, которая применима без ограничений к чему угодно, наблюдаемое и наблюдатель должны рассматриваться в точности одинаковым образом.

Нильс Бор был не согласен. Он утверждал, что экспериментаторы и их оборудование действительноотличаются от элементарных частиц. Хотя они и сделаны из одинаковых частиц, они являются «большими» собраниями элементарных частиц и поэтому управляются законами классической физики. Где-то между мельчайшим миром отдельных атомов и субатомных частиц и привычным миром людей и их оборудования правила меняются, поскольку меняются размеры. Мотивировка для принятия этого разделения ясна: крохотные частицы, в соответствии с квантовой механикой, могут находиться в состоянии размытой смеси тут и там, тогда как мы не видим подобного поведения в большом, повседневном мире. Но где точно находится граница? И, что жизненно важно, как два набора правил согласуются, когда большой повседневный мир сталкивается с очень маленьким миром атомов, как в случае измерения? Бор настойчиво декларировал, что эти вопросы должны быть вынесены за границы обсуждения. Под этим он понимал, по правде говоря, что они находятся за границами того, на что он или кто-либо другой сможет дать ответ. И поскольку даже без ответа на эти вопросы теория даёт поразительно точные предсказания, долгое время такие проблемы находились в самой нижней части списка важнейших вопросов, которые рассматривались физиками.

Но для того чтобы полностью понять квантовую механику, чтобы определить до конца, что она говорит о реальности, и чтобы установить, какую роль она может играть в выборе направления стрелы времени, необходимо полное понимание проблемы квантового измерения.

В следующих двух разделах мы опишем некоторые из наиболее заметных и многообещающих попыток это сделать. Если вы захотите сразу перейти к последнему разделу, посвящённому стреле времени в квантовой механике, то отметим, что ответ таков. Множество хитроумных работ по проблеме квантовых измерений привело к значительным успехам, но принимаемое большинством решение проблемы, по-видимому, всё ещё находится вне пределов нашей досягаемости. Многие рассматривают это как самый важный пробел в формулировке квантовых законов.

Реальность и проблема квантового измерения

За время существования квантовой теории поступило множество предложений для решения проблемы квантового измерения. Ирония заключается в том, что, хотя они влекли за собой различные концепции реальности (некоторые — радикально различные), когда дело касалось предсказаний того, что исследователь будет измерять почти во всех экспериментах, все они были в согласии друг с другом и каждое работало подобно заклинанию. Каждое предложение показывало один и тот же спектакль, хотя, если вы посмотрите за кулисы, то увидите, что их способы действия существенно отличаются.

Когда речь идёт о развлечении, вы обычно не хотите знать, что происходит за кулисами; вы вполне удовлетворяетесь тем, что обращаете внимание исключительно на результат. Но когда речь идёт о понимании Вселенной, имеется непреодолимое желание отдёрнуть все шторы, открыть все двери и полностью обнажить глубинные внутренние механизмы реальности. Бор считал это побуждение безосновательным и вводящим в заблуждение. Для него реальность естьеё представление. Как в монологе Сполдинга Грея [50], голые измерения экспериментатора и являются всем спектаклем. Ничего другого нет. Согласно Бору, «за кулисами» ничего нет. Идея попытаться проанализировать, как, когда и почему квантовая волновая функция отбрасывает все возможности, кроме одной, и даёт одно определённое число на измерительном приборе, — ошибочная идея. Измеренное число само по себе является всем, что заслуживает внимания.

Этот взгляд господствовал в течение десятилетий. Однако его успокаивающее действие на ум, пытающийся, несмотря ни на что, понять квантовую теорию, никак не способствует ощущению, что превосходная предсказательная сила квантовой механики означает, что это и естьпроход в скрытую реальность, лежащую в основе нашей Вселенной. Успокаивающее действие этого подхода не может помочь идти дальше и понять, как квантовая механика связана с повседневным опытом — как она перекидывает мост через пропасть между волновой функцией и наблюдением, и какая скрытая реальность лежит в основе наблюдений. Многие исследователи приняли этот вызов; ниже приводятся некоторые разработанные ими подходы.

вернуться

50

Сполдинг Грей — американский актёр. (Прим. ред.)

60
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело