Собрание сочинений, том 20 - Маркс Карл Генрих - Страница 111
- Предыдущая
- 111/205
- Следующая
Но свои величайшие триумфы открытый Гегелем закон природы празднует в области химии. Химию можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава. Это знал уже сам Гегель («Логика», Полное собрание сочинений, т. III, стр. 433)[299]. Возьмем кислород: если в молекулу здесь соединяются три атома, а не два, как обыкновенно, то мы имеем перед собой озон — тело, весьма определенно отличающееся своим запахом и действием от обыкновенного кислорода. А что сказать о различных пропорциях, в которых кислород соединяется с азотом или серой и из которых каждая дает тело, качественно отличное от всех других из этих соединений! Как отличен веселящий газ (закись азота N2O) от азотного ангидрида (пятиокиси азота N2O5)! Первый — это газ, второй, при обыкновенной температуре, — твердое кристаллическое тело. А между тем все отличие между ними по составу заключается в том, что во втором теле в пять раз больше кислорода, чем в первом, и между обоими расположены еще три других окисла азота (NO, N2O3, NO2), которые все отличаются качественно от них обоих и друг от друга.
Еще поразительнее обнаруживается это в гомологических рядах соединений углерода, особенно в случае простейших углеводородов. Из нормальных парафинов простейший — это метан, СН4. Здесь 4 единицы сродства атома углерода насыщены 4 атомами водорода. У второго парафина — этана, C2H6 ,— два атома углерода связаны между собой, а свободные 6 единиц сродства насыщены 6 атомами водорода. Дальше мы имеем С3Н8, С4Н10 и т. д. по алгебраической формуле СnН2n+2, так что, прибавляя каждый раз группу CH2, мы получаем тело, качественно отличное от предыдущего. Три низших члена этого ряда — газы; высший известный нам член ряда, гексадекан С16Н34, — твердое тело с точкой кипения 278° С. Точно так же обстоит дело с рядом (теоретически) выведенных из парафинов первичных алкоголей с формулой СnН2n+2O и с рядом одноосновных жирных кислот (формула СnН2n+2O2). Какое качественное различие приносит с собой количественное прибавление С3Н6, можно узнать на основании опыта: достаточно принять в каком-нибудь пригодном для питья виде, без примеси других алкоголей, винный спирт C2H6O, а в другой раз принять тот же самый винный спирт, но с небольшой примесью амилового спирта C5H12O, который образует главную составную часть гнусного сивушного масла. На следующее утро наша голова почувствует это, и к ущербу для себя; так что можно даже сказать, что опьянение и следующее за ним похмелье являются тоже перешедшим в качество количеством: с одной стороны — винного спирта, а с другой — прибавленного к нему С3Н6.
В этих рядах гегелевский закон выступает перед нами между прочим еще и в другой форме. Нижние члены ряда допускают только одно-единственное взаимное расположение атомов. Но если число объединяющихся в молекулу атомов достигает некоторой определенной для каждого ряда величины, то группировка атомов в молекуле может происходить несколькими способами; таким образом могут появиться два или несколько изомеров, имеющих в молекуле одинаковое число атомов С, Н, О, но тем не менее качественно различных между собой. Мы в состоянии даже вычислить, сколько подобных изомеров возможно для каждого члена ряда. Так, в ряду парафинов, для С4Н10 существуют два изомера, для C5H12 —три; для высших членов число возможных изомеров возрастает очень быстро. Таким образом, опять-таки количество атомов в молекуле обусловливает возможность, а также — поскольку это показано на опыте — реальное существование подобных качественно различных изомеров.
Мало того. По аналогии с знакомыми нам в каждом из этих рядов телами мы можем строить выводы о физических свойствах не известных нам еще членов такого ряда и предсказывать с достаточной уверенностью — по крайней мере для следующих за известными нам членов ряда — эти свойства, например точку кипения и т. д.
Наконец, закон Гегеля имеет силу не только для сложных тел, но и для самих химических элементов. Мы знаем теперь, что
«химические свойства элементов являются периодической функцией атомных весов» (Роско и Шорлеммер, «Подробный учебник химии», том II, стр. 823)[300], что, следовательно, их качество обусловлено количеством их атомного веса. Это удалось блестящим образом подтвердить. Менделеев доказал, что в рядах сродных элементов, расположенных по атомным весам, имеются различные пробелы, указывающие на то, что здесь должны быть еще открыты новые элементы. Он наперед описал общие химические свойства одного из этих неизвестных элементов, — названного им экаалюминием, потому что в начинающемся с алюминия ряду он непосредственно следует за алюминием, — и предсказал приблизительно его удельный и атомный вес и его атомный объем. Несколько лет спустя Лекок де Буабодран действительно открыл этот элемент, и оказалось, что предсказания Менделеева, с совершенно незначительными отклонениями, оправдались. Экаалюминий получил свою реализацию в галлии (там же, стр. 828)[301]. Менделеев, применив бессознательно гегелевский закон о переходе количества в качество, совершил научный подвиг, который смело можно поставить рядом с открытием Леверье, вычислившего орбиту еще не известной планеты — Нептуна.
Этот же самый закон подтверждается на каждом шагу в биологии и в истории человеческого общества, но мы ограничимся примерами из области точных наук, ибо здесь количества могут быть точно измерены и прослежены.
Весьма вероятно, что те самые господа, которые до сих пор поносили закон перехода количества в качество как мистицизм и непонятный трансцендентализм, теперь заявят, что это есть нечто само собой разумеющееся, тривиальное и плоское, что они это применяли уже давно и что, таким образом, им не сообщают здесь ничего нового. Но то, что некоторый всеобщий закон развития природы, общества и мышления впервые был высказан в его общезначимой форме, — это всегда остается подвигом всемирно-исторического значения. И если эти господа в течение многих лет заставляли количество и качество переходить друг в друга, не зная того, что они делали, то им придется искать утешения вместе с мольеровским господином Журденом, который тоже всю свою жизнь говорил прозой, совершенно не подозревая этого[302].
ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ[303]
Движение, рассматриваемое в самом общем смысле слова, т. е. понимаемое как способ существования материи, как внутренне присущий материи атрибут, обнимает собой все происходящие во вселенной изменения и процессы, начиная от простого перемещения и кончая мышлением. Само собой разумеется, что изучение природы движения должно было исходить от низших, простейших форм его и должно было научиться понимать их прежде, чем могло дать что-нибудь для объяснения высших и более сложных форм его. И действительно, мы видим, что в историческом развитии естествознания раньше всего разрабатывается теория простого перемещения, механика небесных тел и земных масс; за ней следует теория молекулярного движения, физика, а тотчас же вслед за последней, почти наряду с ней, а иногда и опережая ее, наука о движении атомов, химия. Лишь после того как эти различные отрасли познания форм движения, господствующих в области неживой природы, достигли высокой степени развития, можно было с успехом приняться за объяснение явлений движения, представляющих процесс жизни. Объяснение этих явлений шло вперед в той мере, в какой двигались вперед механика, физика и химия. Таким образом, в то время как механика уже давно была в состоянии удовлетворительно объяснить происходящие в животном теле действия костных рычагов, приводимых в движение сокращением мускулов, сводя эти действия к своим законам, имеющим силу также и в неживой природе, физико-химическое обоснование прочих явлений жизни все еще находится почти в самой начальной стадии своего развития. Поэтому, исследуя здесь природу движения, мы вынуждены оставить в стороне органические формы движения. Сообразно с уровнем научного знания мы вынуждены будем ограничиться формами движения неживой природы.
- Предыдущая
- 111/205
- Следующая