100 великих учёных - Самин Дмитрий К. - Страница 66
- Предыдущая
- 66/167
- Следующая
МИХАИЛ ВАСИЛЬЕВИЧ ОСТРОГРАДСКИЙ
Михаил Васильевич Остроградский родился 12 (24) сентября 1801 года в деревне Пашенной Кобелякского уезда Полтавской губернии в семье небогатого помещика.
В 1816 году он поступил на физико-математическое отделение Харьковского университета и вскоре стал удивлять всех своими необыкновенными успехами в изучении математики. На Михаила обратил внимание ректор университета, профессор Т. Ф. Осиповский — талантливый математик и выдающийся педагог. Он расположил к себе многообещающего юношу и руководил его занятиями. В октябре 1818 года Остроградский окончил Харьковский университет, а 1820 году он успешно сдал экзамены на звание кандидата наук. Перед ним, казалось, открывалась прямая дорога к университетской профессуре.
Однако учёной степени Остроградский не получил, и причиной тому послужила острая идейная борьба, развернувшаяся в Харьковском и других университетах России, вызванная наступлением реакции в последние годы царствования Александра I. Первыми жертвами реакции стали просвещение и университеты.
Т. Ф. Осиповский, любимец передового студенчества, человек откровенно материалистических убеждений, пришёлся не ко двору. Его отправили в отставку, одновременно нанеся удар и по его единомышленникам и поклонникам. Одному из первых досталось его лучшему ученику Остроградскому, на которого донесли, что он не посещал лекций по философии и по обязательному для всех студентов «богопознанию и христианскому учению». На этом ничтожном, надуманном основании ему не только отказали в присуждении степени кандидата наук, но и лишили его диплома об окончании университета. Это было неслыханным глумлением над будущим учёным, чей талант был замечен уже тогда.
К счастью, мракобесам не удалось погубить талант Остроградского. Наоборот, в нём сильно укрепилась любовь к математике, и он решает продолжить свои занятия в Париже под руководством выдающихся математиков Политехнической школы. Он приезжает туда в мае 1822 года. В Политехнической школе, Сорбонне, Коллеж де Франс он слушает лекции знаменитых учёных Коши, Фурье, Лапласа, Монжа, Пуассона, Лежандра Штурма, Понселе, Вине и других, пролагавших новые пути в математическом анализе, математической физике и механике. Изучив и усвоив результаты, достигнутые французской математической школой, Остроградский и сам стал заниматься важными и актуальными вопросами того времени, часто опережая своих парижских коллег.
Выдающиеся способности молодого учёного вскоре получили довольно широкое признание. Так, Коши в мемуаре, напечатанном в журнале Парижской академии наук в 1825 году, с похвалой отзывается о первых научных исследованиях Остроградского, посвящённых вычислению интегралов. Коши писал: «…один русский молодой человек, одарённый большой проницательностью и весьма искусный в вычислении бесконечно малых, Остроградский, прибегнув также к употреблению тех же интегралов и к преобразованию их в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, помещённые мной в 19-й тетради Политехнической школы. Господин Остроградский любезно сообщил мне главные результаты своей работы».
В 1826 году русский учёный представил Парижской академии наук свою первую научную работу — «Мемуар о распространении волн в цилиндрическом бассейне», высоко оценённую Коши и напечатанную в трудах академии. О научном значении этой работы можно судить хотя бы по тому, что ещё в 1816 году академия объявила специальный конкурс на её решение.
В 1824–1827 годах Остроградский представил ещё несколько мемуаров. Эти работы укрепили научную репутацию молодого учёного и завоевали ему дружбу и уважение многих французских математиков.
Но Михаила Васильевича неумолимо тянет на родину, где о его успехах хорошо знали. Недаром молодых людей, отправлявшихся учиться за границу, родные и близкие напутствовали словами: «Становись Остроградским».
В 1828 году он выехал в Россию. Тяжёлой была эта поездка. В дороге его обокрали, и ему пришлось от Франкфурта-на-Майне до Петербурга добираться пешком. «Русский пешеход», пробирающийся к тому же из-за границы, выглядел весьма подозрительным, и мнительные власти, которым везде чудились восстания декабристов, установили за ним тайный полицейский надзор. Вероятно, об этом Остроградский не знал до конца своих дней.
Сразу же после приезда Остроградского в Петербург началась его плодотворная работа в Академии наук и кипучая педагогическая деятельность. Академия наук высоко оценила научную деятельность Остроградского: в августе 1830 года его избрали экстраординарным, а через год — ординарным академиком по прикладной математике. С этого времени его жизнь была полна творческих удач, и деятельность его отмечалась присвоением ряда почётных учёных званий. Так, в 1834 году он был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 году — членом Римской академии Линчей и в 1856 году — членом-корреспондентом Парижской академии.
Научные интересы Остроградского определились рано, ещё до отъезда в Париж. В объяснении совету Харьковского университета Остроградский ещё в 1820 году писал, что желает «усовершенствовать себя по части наук, относящихся к прикладной математике». И действительно, многие свои труды он посвятил математической физике и механике, став одним из тех, кто заложил фундамент этих наук.
По математической физике Остроградский написал пятнадцать работ. Большая часть их относится к задачам распространения тепла, теории упругости, гидродинамики. Наибольшее научное значение имеют его работы по теории теплоты. Эти исследования, помимо того, что содержат важнейшие результаты, относящиеся непосредственное к теории распространения тепла, имеют огромное общематематическое значение. В них, с одной стороны, заложены начала для ряда важных теорий, развивающихся в наше время, а с другой стороны, в них содержатся теоремы, являющиеся одними из центральных в математическом анализе.
Первым из русских учёных Остроградский стал заниматься аналитической механикой. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщённых принципов статики и динамики.
Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внёс существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших учёного в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит его с Лагранжем, одним из создателей вариационного исчисления и творцом аналитической механики.
Остроградский изучал проблемы аналитической механики в самом общем виде. Такая постановка вопроса вела в свою очередь к изучению вариационного исчисления, в которое, как частный случай, входит динамика. Мемуар Остроградского «О дифференциальных уравнениях, относящихся к задаче изопериметров», напечатанный в «Трудах» Петербургской академии наук в 1850 году, принадлежит в равной мере механике и вариационному исчислению. В силу такого подхода исследования Остроградского по механике значительно обогатили и развили понимание вариационных принципов, прежде всего, с математической точки зрения. Поэтому интегрально-вариационный принцип, сформулированный Гамильтоном, справедливо называется принципом Гамильтона—Остроградского.
Его труды по механике, включая «Лекции по аналитической механике» и «Курс небесной механики», явились фундаментом, на котором строилась и развивалась русская школа в области механики. Работы Остроградского по математическому анализу в большинстве случаев вызваны его исследованиями по математической физике и механике: они дают решение математических вопросов, поставленных теоретическим естествознанием того времени. Так, в связи с исследованиями вопросов распространения тепла в твёрдом теле он получил знаменитую формулу, вошедшую теперь во все учебники математического анализа под именем формулы Остроградского—Грина. В настоящее время эта формула играет огромную роль в математической физике, векторном анализе и других разделах математики и её приложений.
- Предыдущая
- 66/167
- Следующая