Выбери любимый жанр

Большая Советская Энциклопедия (ЭЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 94


Изменить размер шрифта:

94

  Развитие Э. сдерживают недостатки этого способа теплогенерации: более высокая стоимость эксплуатации электротермических установок но сравнению с другими типами печей; большая стоимость электротермического оборудования в изготовлении, комплектации и эксплуатации, а следовательно, в ряде случаев большие капитальные затраты, и более высокие требования к технической культуре производства, нередко также большой расход дорогих и дефицитных материалов на изготовление электротермического оборудования; меньшие надёжность, долговечность и ремонтопригодность электротермических установок; зависимость работы электротермической установки от режима работы энергосистемы.

  Электротермические установки применяют: если технологический процесс нельзя осуществить без Э. (в этом случае целесообразность определяется значением получаемой продукции для народного хозяйства); если можно получить продукцию более высокого качества (экономический эффект зависит от того, насколько выгоды от улучшения свойств продукции компенсируют увеличение сё стоимости); если улучшаются условия труда, повышается безопасность обслуживающего персонала; если достигается снижение себестоимости (благодаря более высокой производительности труда) или уменьшение капитальных затрат, включая затраты в смежных отраслях производства.

  На долю Э. приходится до 15% потребляемой промышленностью электрической энергии. На базе Э. созданы и развиваются производства специальных сталей, ферросплавов, цветных и лёгких металлов и сплавов, твёрдых сплавов, редких металлов, карбида кальция, фосфора и других продуктов; осуществляются обработка металлов давлением и термическая обработка; происходит электрификация быта.

  Лит.: Егоров А. В., Моржин А. Ф., Электрические печи для производства сталей, М., 1975; Свенчанский А. Д., Электрические промышленные печи, 2 изд., ч. 1, М., 1975; История энергетической техники СССР, т. 2, М. — Л., 1957. с. 460—93; Paschkis V., Persson J., Industrial electric furnaces and appliances, 2 ed., N. Y. — L., 1960.

  А. В. Егоров, А. Ф. Моржин.

Электротермообработка

Электротермообрабо'тка, методы термической обработки металлов и их сплавов, при которых нагрев осуществляется электрическим током. Наибольшее распространение Э. (в отличие от пламенного нагрева) получила при поверхностной закалке в электролите и токами высокой частоты (ТВЧ). При закалке в электролите деталь помещают в ванну с электролитом; корпус ванны является анодом, деталь — катодом; при прохождении постоянного тока через электролит выделяется водород, который осаждается на поверхности детали, что приводит к повышению электрического сопротивления и, как результат, к нагреву изделия. После нагрева ток выключают, а деталь закаливают в самом электролите или в отдельном (закалочном) баке. Преимущества закалки в электролите — простота, возможность нагревать отдельные места детали, автоматизировать процесс. Недостатки — трудность регулирования температуры, низкая производительность, необходимость предохранения деталей от коррозии.

  Поверхностная закалка токами высокой частоты даёт возможность получить на изделии твёрдый поверхностный слой при мягкой и вязкой сердцевине. Закалка изделия ТВЧ осуществляется с помощью индукционного нагрева в индукционной нагревательной установке . В зависимости от формы, размеров деталей и предъявляемых к ним требований различают: одновременный, непрерывно-последовательный и последовательный способы закалки. Преимущества обработки ТВЧ: высокая производительность и экономичность, более высокая по сравнению с другими методами твёрдость закалённой поверхности, высокая скорость нагрева, отсутствие окалины, возможность точного регулирования глубины закалённого слоя и автоматизации процесса, улучшение условий труда и др.

  Н. А. Шемелёв.

Электротехника

Электроте'хника (от электро... и техника ), отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки материалов, передачи информации, охватывающая вопросы получения, преобразования и использования электрической энергии в практической деятельности человека.

  Историческая справка. Возникновению Э. предшествовал длительный период накопления знаний об электричестве и магнетизме , в течение которого были сделаны лишь отдельные попытки применения электричества в медицине, а также для передачи сигналов. В 17—18 вв. исследованию природы электрических явлений были посвящены труды М. В. Ломоносова . Т. В. Рихмана , Б. Франклина , Ш. О. Кулона , П. Дивиша и др. Для становления Э. решающее значение имело появление первого источника непрерывного тока — вольтова столба ( А. Вольта , 1800), а затем более совершенных гальванических элементов, что позволило в 1-й трети 19 в. провести многочисленные исследования химических, тепловых, световых и магнитных явлений, вызываемых электрическим током (труды В. В. Петрова , X. К. Эрстеда , Д. Ф. Араго , М. Фарадея , Дж. Генри , А. М. Ампера , Г. С. Ома и др.). В этот период были заложены основы электродинамики , открыт важнейший закон электрической цепи — Ома закон . Среди попыток практического использования результатов этих достижений наиболее значительными были работы в телеграфии (электромагнитный телеграф П. Л. Шиллинга , 1832), в военном деле (гальваноударные морские мины Б. С. Якоби , 1840-е гг.), в области электрических измерений (индикатор электрического тока, т. н. мультипликатор, австрийского учёного И. К. Швейгера, 1820). Открытие электромагнитной индукции (1831—32) предопределило появление электрических машин — двигателей и генераторов. Поскольку все первые потребители электроэнергии использовали постоянный ток (как наиболее изученный), первые электрические машины были постоянного тока машинами . Исторически электродвигатели стали создаваться раньше электромашинных генераторов, т. к. в 1-й трети 19 в. гальванические элементы как источники тока к большей или меньшей мере удовлетворяли требованиям практики. Период совершенствования конструкции электродвигателя — от лабораторных приборов, демонстрировавших возможность превращения электрической энергии в механическую (установка Фарадея, 1821), до машин промышленного типа — охватывает приблизительно 50 лет. В первых электродвигателях подвижная часть совершала возвратно-поступательное или качательное движение, а момент на валу двигателя был пульсирующим (например, в двигателе Генри). Начиная с середины 30-х гг. 19 в. стали строиться двигатели с вращающимся якорем . Таким электродвигателем, получившим практическое применение, был двигатель, разработанный Якоби (1834--38). Испытание этого двигателя, приводившего в движение «электрический бот», показало, с одной стороны, принципиальную возможность его практического применения, а с другой — необходимость создания более экономичного по сравнению с гальваническими элементами источника электроэнергии. Таким источником стал электромашинный генератор, прообразом которого была униполярная машина Фарадея (1831). Первыми практически пригодными электромашинными генераторами были магнитоэлектрические генераторы, в которых магнитное поле создавалось постоянными магнитами, а якорями служили массивные индуктивные катушки (Якоби, 1842). В 1851 немецкий учёный В. Зинстеден предложил заменить постоянные магниты электромагнитами , катушки которых питались от самостоятельных магнитоэлектрических генераторов. Дальнейшее совершенствование конструкции электромашинного генератора связано с использованием для возбуждения обмотки электромагнита тока самого генератора. Такие генераторы с самовозбуждением были предложены почти одновременно датским учёным С. Хиортом (1854), английскими инженерами К. и С. Варли (1867), Л. Йедликом , Ч. Уитстоном , Э. В. Сименсом . Промышленное производство генераторов было начато в 1870 в Париже после того, как З. Т. Грамм впервые применил в генераторе с самовозбуждением кольцевой шихтованный якорь, принципиальная конструкция которого была предложена для электродвигателя в 1860 А. Пачинотти . Генератор Грамма работал не только в генераторном, но и в двигательном режиме, что положило начало практическому внедрению принципа обратимости электрических машин (открытому Э. X. Ленцем , 1832—38) и позволило значительно расширить область использования электрических машин. Последующее совершенствование машин постоянного тока шло по пути улучшения их конструктивных элементов — замена кольцевого якоря барабанным (Ф. Хёфнер-Альтенек , 1873), усовершенствование шихтованных якорей (американский изобретатель Х. Максим, 1880), введение компенсационной обмотки (1884), дополнительных полюсов (1885) и др. К 80-м гг. 19 в. электрические машины постоянного тока приобрели основные конструктивные черты современных машин. Их совершенствованию способствовало открытие закона о направлении индукционных токов (см. Ленца правило ), обнаружение и исследование противоэдс (Якоби, 1840) и реакции якоря (Ленц, 1847), разработка методов расчёта электрических цепей (Г. Р. Кирхгоф , 1847) и магнитных цепей (английский учёный Дж. Гопкинсон, нач. 80-х гг.), изучение магнитных свойств железа (А. Г. Столетов , 1871) и др. К концу 70-х гг. относятся работы Дж. К. Максвелла , сформулировавшего уравнения (см. Максвелла уравнения ), являющиеся основой современного учения об электромагнитном поле .

94
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело