Большая Советская Энциклопедия (ЧИ) - Большая Советская Энциклопедия "БСЭ" - Страница 28
- Предыдущая
- 28/46
- Следующая
Среди простых чисел попадаются пары таких, разность между которыми равна двум (т. н. простые близнецы), однако конечность или бесконечность таких пар не доказана.
Евклид считал очевидным, что с помощью умножения только простых чисел можно получить все натуральные числа, причём каждое натуральное число представимо в виде произведения простых чисел единственным образом (с точностью до порядка множителей). Т. о., простые числа образуют мультипликативный базис натурального ряда. Первыми задачами о простых числах были такие: как часто они расположены в натуральном ряде и как далеко они отстоят друг от друга. Изучение распределения простых чисел привело к созданию алгоритма (правила), позволяющего получать таблицы простых чисел. Таким алгоритмом является Эратосфена решето (3 в. до н. э.). Евклид в «Началах» указал способ нахождения общего наибольшего делителя двух чисел (Евклида алгоритм ), следствием которого является теорема об однозначном разложении натуральных чисел на простые сомножители.
Вопрос о целочисленных решениях различного вида уравнений также восходит к древности. Простейшим уравнением в целых числах является линейное уравнение аХ + bY = с , где a , b и с — попарно взаимно простые целые числа. С помощью алгоритма Евклида находится решение уравнения аХ + bY = 1, из которого затем получаются все решения первоначального уравнения. Другим уравнением в целых числах является уравнение X2 + Y2 = Z2 (решение Х = 3, Y = 4, Z = 5 связано с именем Пифагора), все целочисленные решения которого выписаны в «Началах» (кн. X, предложение 29) X = r2—q2 , Y = 2rq , Z = r2+q2 , где r и q — целые числа. Евклиду было известно также и уравнение аХ2 +1= Y2 , названное впоследствии Пелля уравнением . В «Началах» (кн. X, предложение 9) Евклид показал, как находить все его решения, исходя из наименьшего, для случая а = 2. Систематическое изложение теории известных к тому времени уравнений в целых числах дано Диофантом в его «Арифметике» (середина 3 в. н. э.). Эта книга сыграла большую роль в дальнейшем развитии той части Ч. т., которая занимается решением уравнений в целых числах, называемых теперь диофантовыми уравнениями .
Следующий этап в развитии Ч. т. связан с именем П. Ферма , которому принадлежит ряд выдающихся открытий в теории диофантовых уравнений и в теории, связанной с делимостью целых чисел. Им была выдвинута гипотеза, получившая название Ферма великая теорема , и доказана теорема, известная как Ферма малая теорема , которая играет важную роль в теории сравнений и её позднейших обобщениях. Продолжая исследования Ферма по теории делимости чисел, Л. Эйлер доказал теорему, обобщающую малую теорему Ферма. Ему принадлежат также и первые доказательства великой теоремы Ферма для показателя n = 3.
К началу 18 в. в науке о целых числах накопилось много фактов, позволивших создать стройные теории и общие методы решения задач Ч. т.
Л. Эйлер был первым из математиков, кто стал создавать общие методы и применять др. разделы математики, в частности математический анализ, к решению задач Ч. т. Исследуя вопрос о числе решений линейных уравнений вида
a1X1 +... + ап Хп = N ,
где a1 ,..., an — натуральные числа, в целых неотрицательных числах X1 ,... , Xn , Л. Эйлер построил производящую функцию Ф (z ) от переменной z , коэффициенты которой при разложении по степеням z равняются числу решений указанного уравнения. Функция Ф (z ) определяется как формальное произведение рядов
, …,т. е. Ф (z ) =Ф1 (z )..... Фк (z ), каждый из которых сходится при ½z ½ < 1 и имеет достаточно простой вид, являясь суммой членов бесконечной геометрической прогрессии:
, …,Следовательно,
причём I (N ) — число решений изучаемого уравнения. Метод производящих функций Эйлера послужил истоком кругового метода Харди—Литлвуда, далеко идущим развитием которого, в свою очередь, явился метод тригонометрических сумм И. М. Виноградова .
Другой проблемой Ч. т., стимулировавшей создание мощного метода, была проблема простых чисел. Л. Эйлер, доказывая теорему Евклида о бесконечности числа простых чисел, рассмотрел произведение по всем простым числам р :
при s > 1. Это произведение сходится, и если его раскрыть, то в силу однозначности разложения натуральных чисел на простые сомножители получается, что оно равняется сумме ряда
откуда следует тождество Эйлера:
, s > 1.
Так как при s = 1 ряд справа расходится (гармонический ряд), то из тождества Эйлера следует теорема Евклида. Эта идея Л. Эйлера легла в основу позднейших теорий дзета-функции . Л. Эйлеру и Х. Гольдбаху принадлежат первые постановки аддитивных (т. е. связанных со сложением) задач с простыми числами.
К середине 19 в. в основном было построено здание Ч. т., что связано с именами К. Гаусса , Ж. Лагранжа , А. Лежандра , П. Дирихле , П. Л. Чебышева , Ж. Лиувилля , Э. Куммера .
К. Гаусс создаёт теорию сравнений, называемую иначе арифметикой остаточных классов, с помощью которой были доказаны теорема о том, что простое число является суммой двух квадратов тогда и только тогда, когда оно имеет вид 4n + 1, и теорема о представимости каждого натурального числа суммой четырёх квадратов целых чисел. Кроме того, теория сравнений привела к важным понятиям теоретико-числового характера и тригонометрической суммы. Простейшим характером является Лежандра символ .
К. Гаусс изучил свойства квадратичных вычетов и невычетов. Основной теоремой в этом круге вопросов является т. н. квадратичный закон взаимности, при доказательстве которого К. Гаусс рассмотрел конечные суммы вида
0 < a , р — 1, а — целое.
Суммы такого вида и их обобщения стали называть тригонометрическими, т.к. в силу формулы Эйлера eij = cosj ± i sinj они могут быть представлены в виде суммы синусов и косинусов.
К. Гаусс, а затем П. Дирихле, продолжая исследования Л. Эйлера, создали теорию квадратичных форм, другими словами, — теорию о представлении натуральных чисел формами вида ax2+ 2bxy + су2 , где а , b , с — целые числа.
К. Гаусс и П. Дирихле первыми стали рассматривать проблему о количестве целых точек в областях на плоскости. К. Гаусс доказал, что число целых точек в круге X2+Y2 £ R2 равно pR2 + O (R ), а П. Дирихле, в свою очередь, доказал, что число целых точек с положительными координатами под гиперболой xy = N равно
- Предыдущая
- 28/46
- Следующая