Выбери любимый жанр

Большая Советская Энциклопедия (УЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 14


Изменить размер шрифта:

14

  Основной метод излучения У.— преобразование тем или иным способом электрических колебаний в колебания механические. В диапазоне УНЧ возможно применение электродинамических и электростатических излучателей. Широкое применение в этом диапазоне частот нашли излучатели У., использующие магнитострикционный эффект (см. Магнитострикция ) в никеле и в ряде специальных сплавов, также в ферритах . Для излучения УСЧ и УЗВЧ используется главным образом явление пьезоэлектричества . Основными пьезоэлектрическими материалами для излучателей У. служат пьезокварц, ниобат лития, дигидрофосфат калия, а в диапазоне УНЧ и УСЧ — главным образом различные пьезокерамические материалы. Магнитострикционные излучатели представляют собой сердечник стержневой или кольцевой формы с обмоткой, по которой протекает переменный ток, а пьезоэлектрические — пластинку (рис. 4 ) или стержень из пьезоэлектрического материала с металлическими электродами, к которым прикладывается переменное электрическое напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в которых пьезокерамическая пластинка зажимается между металлическими блоками. Как правило, для увеличения амплитуды колебаний и излучаемой в среду мощности применяются колебания магнитострикционных и пьезоэлектрических элементов на их собственной резонансной частоте.

  Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области УСЧ чрезвычайно широк: интенсивности от 10-14 —10-15вт/см2 до 0,1 вт/см2 считаются малыми. Для многих целей необходимо получить гораздо большие интенсивности, чем те, которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой У. Так, в фокусе параболоида, внутренние стенки которого выполнены из мозаики кварцевых пластинок или из пьезокерамики титаната бария, на частоте 0,5 мгц удаётся получать в воде интенсивности У. большие, чем 105вт/см2 . Для увеличения амплитуды колебаний твёрдых тел в диапазоне УНЧ часто пользуются стержневыми ультразвуковыми концентраторами (см. Концентратор акустический ), позволяющими получать амплитуды смещения до 10-4 см.

  Выбор метода генерации У. зависит от области частот У., характера среды (газ, жидкость, твёрдое тело), типа упругих волн и необходимой интенсивности излучения.

  Приём и обнаружение ультразвука. Вследствие обратимости пьезоэффекта он широко применяется и для приёма У. Изучение ультразвукового поля может производиться и оптическими методами: У., распространяясь в какой-либо среде, вызывает изменение её оптического показателя преломления, благодаря чему его можно визуализировать, если среда прозрачна для света. Смежная область акустики и оптики (акустооптика) получила большое развитие, в особенности после появления газовых лазеров непрерывного действия; развились исследования по дифракции света на У. и её различным применениям.

  Применения ультразвука. Применения У. чрезвычайно разнообразны. У. служит мощным методом исследования различных явлений во многих областях физики. Так, например, ультразвуковые методы применяются в физике твёрдого тела и физике полупроводников; возникла целая новая область физики — акусто-электроника, на основе достижений которой разрабатываются различные приборы для обработки сигнальной информации в микроэлектронике. У. играет большую роль в изучении вещества. Наряду с методами молекулярной акустики для жидкостей и газов, в области изучения твёрдых тел измерение скорости с   и коэффициента поглощения a используются для определения модулей упругости и диссипативных характеристик вещества. Получила развитие квантовая акустика, изучающая взаимодействие квантов упругих возмущений — фононов — с электронами , магнонами  и др. квазичастицами и элементарными возбуждениями в твёрдых телах. У. широко применяется в технике, а также ультразвуковые методы всё больше проникают в биологию и медицину.

  Применение У. в технике. По данным измерений с   и a, во многих технических задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава различных жидкостей и т.д.). Используя явление отражения У. на границе различных сред, конструируют ультразвуковые приборы для измерения размеров изделий (например, ультразвуковые толщиномеры), для определения уровня жидкости в больших, недоступных для прямого измерения ёмкостях. У. сравнительно малой интенсивности (до ~0,1 вт/см2 ) широко используется для целей неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качественного проката и т.д.) (см. Дефектоскопия ). Быстро развивается направление дефектоскопии, получившее название акустической эмиссии, которая состоит в том, что при приложении механического напряжения к образцу (конструкции) твёрдого тела он «потрескивает» (подобно тому, как при изгибе «потрескивает» оловянный стержень). Это объясняется тем, что в образце возникает движение дислокаций , которые при определённых условиях (до конца ещё пока не выясненных) становятся источниками (так же, как и совокупность дислокаций и субмикроскопических трещин) акустических импульсов со спектром, содержащим частоты У. При помощи акустической эмиссии удаётся обнаружить образование и развитие трещины, а также определить её местонахождение в ответственных деталях различных конструкций. При помощи У. осуществляется звуковидение : преобразуя ультразвуковые колебания в электрические, а последние — в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. На частотах УЗВЧ диапазона создан ультразвуковой микроскоп — прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит и том, что при биологических исследованиях не требуется предварительного окрашивания предмета (рис. 5 ). Развитие голографии привело к определённым успехам в области ультразвуковой голографии.

  Весьма важную роль У. играет в гидроакустике , поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На принципе отражения ультразвуковых импульсов от препятствий, возникающих на пути их распространения, строится работа таких приборов, как эхолот , гидролокатор .

  У. большой интенсивности (главным образом диапазон УНЧ) оказывает воздействие на протекание тех или иных технологических процессов (см. Ультразвуковая обработка ) посредством нелинейных эффектов — кавитации, акустических потоков и др. Так, при помощи мощного У. ускоряется ряд процессов тепло- и массообмена в металлургии. Воздействие ультразвуковых колебаний непосредственно на расплавы позволяет получить более мелкокристаллическую и однородную структуру металла. Ультразвуковая кавитация широко используется для очистки от загрязнений как мелких (часовое производство, приборостроение, электронная техника), так и крупных производственных деталей (трансформаторное железо, прокат и др.). С помощью У. удаётся осуществить пайку алюминиевых изделий. В микроэлектронике и полупроводниковой технике используется ультразвуковая приварка тонких проводников к напылённым металлическим плёнкам и непосредственно к полупроводникам. С помощью ультразвуковой сварки соединяют пластмассовые детали, полимерные плёнки, синтетические ткани и др. Во всех этих случаях ту или иную роль играет процесс ультразвуковой очистки, локальное нагревание под действием У., ускорение процессов диффузии, изменение состояния полимера. У. позволяет обрабатывать хрупкие детали (например, стекло, керамику), а также детали сложной конфигурации (рис. 6 ). В этих процессах основную роль играют удары ультразвукового инструмента по частицам абразивной суспензии.

14
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело