Большая Советская Энциклопедия (ТУ) - Большая Советская Энциклопедия "БСЭ" - Страница 53
- Предыдущая
- 53/131
- Следующая
справедливого на не слишком малых расстояниях y от стенки; здесь
(tw, — напряжение трения на стенке), А и В — постоянные, а , в случае гладкой стенки и пропорционально геометрической высоте бугорков шероховатости в случае шероховатой.Мелкомасштабные компоненты Т. (масштабы которых малы по сравнению с масштабами течения в целом) вносят существенный вклад в ускорения жидких частиц и в определяемую ими способность турбулентного потока нести взвешенные частицы, в относительное рассеяние частиц и дробление капель в потоке, в перемешивание турбулентных жидкостей, в генерацию магнитного поля в электропроводной жидкости, в спектр неоднородностей электронной плотности в ионосфере, в флуктуации параметров электромагнитных волн, в болтанку летательных аппаратов и т.д.
Описание мелкомасштабных компонент Т. базируется на гипотезах Колмогорова, основанных на представлении о каскадном процессе передачи энергии от крупномасштабных ко всё более и более мелкомасштабным компонентам Т. Вследствие хаотичности и многокаскадности этого процесса при очень больших Re режим мелкомасштабных компонент оказывается пространственно-однородным, изотропным и квазистационарным и определяется наличием среднего притока энергии
от крупномасштабных компонент и равной ему средней диссипации энергии в области минимальных масштабов. По первой гипотезе Колмогорова, статистические характеристики мелкомасштабных компонент определяются только двумя параметрами: и n; в частности, минимальный масштаб турбулентных неоднородностей (в атмосфере l ~ 10-1см). По второй гипотезе, при очень больших Re в мелкомасштабной области существует такой (так называемый инерционный) интервал масштабов, больших по сравнению с l, в котором параметр n оказывается несущественным, так что в этом интервале характеристики Т. определяются только одним параметром .Теория подобия мелкомасштабных компонент Т. была использована для описания локальной структуры полей температуры, давления, ускорения, пассивных примесей. Выводы теории нашли подтверждение при измерениях характеристик различных турбулентных течений. В 1962 А. Н. Колмогоров и А. М. Обухов предложили уточнение теории путём учёта флуктуаций поля диссипации энергии, статистические свойства которых не универсальны: они могут быть разными в различных типах течений (и, в частности, могут зависеть от Re).
Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Хинце И. О., Турбулентность, пер. с англ., М., 1963; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Бэтчелор Дж. К., Теория однородной турбулентности, пер. с англ., М., 1955; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954 (Теоретическая физика); Линь Цзя-цзяо, Теория гидродинамической устойчивости, пер. с англ., М., 1958; Лойцянский Л. Г., Механика жидкости и газа, 3 изд., М., 1970; Шлихтинг Г., Возникновение турбулентности, пер. с нем., М., 1962; Гидродинамическая неустойчивость. Сб. статей, пер. с англ., М., 1964; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.
А. С. Монин.
Турбулентность в атмосфере и гидросфере
Турбуле'нтность в атмосфе'ре и гидросфе'ре. Движение воздуха в атмосфере и воды в гидросфере в большинстве случаев имеет турбулентный характер (см. Турбулентность). Т. в а. и г. играет большую роль, так как именно благодаря турбулентности происходят обмен количеством движения и теплотой между атмосферой и океаном (включая, в частности, зарождение ветровых течений и волн в океане), испарение с поверхности океана и суши, вертикальный перенос тепла, влаги, солей, растворённых газов и различных загрязнений, диссипация кинетической энергии, рассеяние и флуктуации амплитуды и фазы звуковых, световых и радиоволн (включая мерцание звёзд, флуктуации радиосигналов космических аппаратов, сверхдальнее телевидение и т.п.).
Специфическими особенностями Т. в а. и г. являются очень широкий спектр масштабов турбулентных неоднородностей (от мм до тыс. км) и существенное влияние вертикального распределения плотности среды на развитие мелкомасштабной турбулентности.
Спектр масштабов турбулентности в атмосфере распадается на синоптическую область (макротурбулентность) с масштабами намного больше эффективной толщины атмосферы Н ~ 10 км и квазидвумерными (квазигоризонтальными) турбулентными неоднородностями и микрометеорологическую область с масштабами намного меньше Н и существенно трёхмерными неоднородностями. В промежуточной мезометеорологической области сколько-нибудь интенсивная турбулентность редка. Макротурбулентность черпает энергию из крупномасштабных неоднородностей притока тепла к атмосфере от подстилающей поверхности, а затрачивает энергию главным образом на генерацию микротурбулентности при гидродинамической неустойчивости вертикальных градиентов скорости ветра.
Неустойчивая стратификация служит для микротурбулентности источником, а устойчивая — стоком энергии; в первом случае микротурбулентность оказывается интенсивной, во втором — слабой. Свойства микротурбулентности наиболее просты в приземном слое атмосферы толщиной в несколько десятков м, в котором вертикальные турбулентные потоки импульса t и тепла q постоянны. При условиях квазистационарности и горизонтальной однородности характеристики крупномасштабных компонент такой турбулентности определяются, кроме высоты z и скорости трения
, также параметром плавучести b = g/T и величиной q / cpr (g — ускорение силы тяжести, cp и r — удельная теплоёмкость и плотность воздуха, T — средняя температура). Измеренные масштабами длины , времени L / u* и температуры q / cp ru*, эти характеристики оказываются универсальными функциями безмерной высоты z / L или определяемого ею числа Ричардсона , (где u и Т— скорость ветра и температура).Свойства океанической микротурбулентности определяются типичным для очень устойчиво стратифицированной жидкости наличием в океане вертикальной микроструктуры — долгоживущих квазиоднородных слоев с толщинами ~ 1 м и менее, разделяемых поверхностями разрыва температуры и солёности. Турбулентность, сосредоточенная в этих слоях, слаба (не способна разрушать разделяющие слои поверхности разрыва), имеет малые числа Рейнольдса (определяемые толщинами слоев), а потому далека от универсального статистического равновесия и определяется особенностями каждого конкретного слоя (а не его глубиной).
Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Монин А. С., Каменкович В. М., Корт В. Г., Изменчивость Мирового океана, Л., 1974; Ламли Дж.-Л., Пановский Г.-А., Структура атмосферной турбулентности, пер. с англ., М., 1966.
А. С. Монин.
Турбулентность плазмы
Турбуле'нтность пла'змы, явление, родственное обычной турбулентности, но осложнённое специфическим характером взаимодействия частиц плазмы (электронов и ионов), осуществляемого дальнодействующими кулоновскими силами. Поскольку для плазмы характерно большое разнообразие типов движений и колебаний, в ней могут возникать и даже присутствовать одновременно многие типы турбулентных состояний. Так, например, грануляция фотосферы Солнца, солнечные пятна и протуберанцы (см. Солнце) представляют собой результат сложного движения плазмы в атмосфере Солнца, и в этом движении плазма проявляет себя просто как сплошная проводящая среда. Турбулентность такого типа, близкая к турбулентности жидкости, называется магнитогидродинамической турбулентностью. Она наблюдается в космической плазме и в лабораторных условиях, например при удержании высокотемпературной плазмы магнитным полем, если при этом не обеспечены условия устойчивости плазмы.
- Предыдущая
- 53/131
- Следующая