Большая Советская Энциклопедия (СФ) - Большая Советская Энциклопедия "БСЭ" - Страница 6
- Предыдущая
- 6/9
- Следующая

или более точные формулы:


С. т. возникла значительно раньше плоской тригонометрии. Свойства прямоугольных сферических треугольников, выражаемые формулами (1')—(3'), и различные случаи их решения были известны ещё греческим учёным Менелаю (1 в.) и Птолемею (2 в.). Решение косоугольных сферических треугольников греческие учёные сводили к решению прямоугольных. Азербайджанский учёный Насирэддин Туей (13 в.) систематически рассмотрел все случаи решения косоугольных сферических треугольников, впервые указав решение в двух труднейших случаях. Основные формулы косоугольных сферических треугольников были найдены арабским учёным Абу-ль-Вефа (10 в.) [формула (1)], немецким математиком И. Региомонтаном (середина 15 в.) [формулы типа (2)], французским математиком Ф. Виетом (2-я половина 16 в.) [формулы типа (21)] и Л. Эйлером (Россия, 18 в.) [формулы типа (3) и (31)]. Эйлер (1753 и 1779) дал всю систему формул С. т. Отдельные удобные для практики формулы С. т. были установлены шотландским математиком Дж. Непером (конец 16 — начало 17 вв.), английским математиком Г. Бригсом (конец 16 — начало 17 вв.), русским астрономом А. И. Лекселем (2-я половина 18 в.), французским астрономом Ж. Деламбром (конец 18 — начало 19 вв.) и др.
Лит. см. при ст. Сферическая геометрия.

Рис. к ст. Сферическая тригонометрия.
Сферические координаты
Сфери'ческие координа'ты точки М, три числа r, q, j, которые определяются следующим образом. Через фиксированную точку О (рис.) проводятся три взаимно оси Ox, Оу, Oz. Число r равно расстоянию от точки О до точки М,q представляет собой угол между вектором





С. к. имеют большое применение в математике и её приложениях к физике и технике.

Рис. к ст. Сферические координаты.
Сферические функции
Сфери'ческие фу'нкции, специальные функции, применяемые для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями, и для решения физических задач, обладающих сферической симметрией. С. ф. являются решениями дифференциального уравнения

получающегося при разделении переменных в Лапласа уравнении в сферических координатах r, q, j. Общий вид решения:

где am — постоянные,


где Рп — Лежандра многочлены.
С. ф. можно рассматривать как функции на поверхности единичной сферы. Функции

образуют полную ортонормированную систему на сфере, играющую ту же роль в разложении функций на сфере, что тригонометрическая система функций {e imj} на окружности. Функции на сфере, не зависящие от координаты j, разлагаются по зональным С. ф.:

С. ф. степени l

при вращении сферы линейно преобразуется по формуле:

(q–1M — точка, в которую переходит точка М сферы при вращении q–1). Коэффициенты

С формулой (1) связана теорема сложения для зональных С. ф.:

где cos g = cos q cos q‘ + sinq sinq' cos (j —j’), g — сферическое расстояние точки (q, j) от точки (q', j’).
Характерным примером многочисленных приложений С. ф. к вопросам математической физики и механики является применение их в теории потенциала. Пусть



а в каждой точке, внутренней по отношению к сфере, равен

Общий член каждого из этих двух рядов представляет собой шаровую функциюсоответственно степени n - 1 и n.
С. ф. были введены А. Лежандроми П. Лапласом в конце 18 в.
Лит.: Бейтмен Г., Эрдей и А., Высшие трансцендентные функции, пер. с англ., т. 1—2, М., 1973; Никифоров А. Ф., Уваров В. Б., Основы теории специальных функций, М., 1974; Гобсон Е. В., Теория сферических и эллипсоидальных функций, пер. с англ., М., 1952; Lense J., Kugelfunktionen, 2 Aufl., Lpz., 1954.
Сферический избыток
Сфери'ческий избы'ток, превышение суммы углов сферического треугольника сверх 180°, то есть сверх суммы углов прямолинейного треугольника на плоскости. Сумма углов треугольника, образованного тремя геодезическими линиями на поверхности с положительной кривизной, т. е. на выпуклой поверхности, всегда больше двух прямых и равна

- Предыдущая
- 6/9
- Следующая