Большая Советская Энциклопедия (ЛО) - Большая Советская Энциклопедия "БСЭ" - Страница 21
- Предыдущая
- 21/82
- Следующая
Если Qn есть n-местная предикатная переменная, a x1,..., xn — предметные переменные, то выражение Qn (x1,..., xn) есть, по определению, атомарная (элементарная) формула. Индекс n у предикатной переменной в атомарной формуле обычно опускается. Содержательно Q (x1,..., xn) означает высказывание, гласящее, что объекты x1,..., xn связаны отношением Q. Формулами считаются атомарные формулы, а также выражения, получаемые из них посредством следующих операций образования новых формул из уже полученных: 1) если j и





Вхождение предметной переменной х в формулу j называется связанным, если х входит в часть j вида $xj или "xj или стоит непосредственно после знака квантора. Несвязанные вхождения переменной в формулу называются свободными. Если найдётся хоть одно свободное вхождение х в j, то говорят, что переменная х входит свободно в j или является параметром j. Интуитивно говоря, формула j с параметрами выражает некоторое условие, которое превращается в конкретное высказывание, если (конкретизировав предварительно область объектов) приписать определённые значения входящим в формулу параметрам и предикатным буквам. Связанные же переменные не имеют самостоятельного значения и служат (вместе с соответствующими кванторами) для обозначения общих утверждений или утверждений существования. Если j — формула, а х и у — предметные переменные, то через j(х½у) будет обозначаться результат замещения всех свободных вхождений x в j на y (а если при этом у оказалось на месте х в части формулы вида "y


Пусть j,

1. (jÉ(

2. ((jÉ(


3. ((j&

4. ((j&


5. (jÉ(


6. ((jÉh)É((



7. (jÉ(j


8. (



9. (ùjÉ)(jÉ

10. ((jÉ


11. (j

12. ("xjÉj(x/y)),
13. (j(x/y) É$xj).
В исчислении предикатов употребляются след. три правила вывода. 1) Правило вывода заключений: из формул j и (jÉ








В отличие от других формулировок исчисления (см., например, Логика, раздел Предмет и метод современной логики), здесь j,

Интуиционистское исчисление предикатов отличается от классического лишь тем, что закон исключенного третьего (аксиома 11) исключается из числа аксиом. Различие двух исчислений отражает различие в их истолкованиях. Истолкование логических связок &,

- Предыдущая
- 21/82
- Следующая