Выбери любимый жанр

Большая Советская Энциклопедия (ЛО) - Большая Советская Энциклопедия "БСЭ" - Страница 18


Изменить размер шрифта:

18

  В 70-е гг. 20 в. получила развитие идея полуформальной системы. Полуформальная система — это также система некоторых правил вывода. Однако некоторые из этих правил могут иметь существенно иной характер, чем правила вывода формальной системы. Они, например, могут допускать выведение новой формулы после того, как с помощью интуиции создалось убеждение в выводимости любой формулы такого-то вида. Сочетание этой идеи с идеей ступенчатого построения математической Л. лежит в основе одного из современных построений логики конструктивной математики. В приложениях математической Л. часто применяются исчисления предикатов — классическое и интуиционистское.

  Математическая Л. органически связана с кибернетикой, в частности с математической теорией управляющих систем и математической лингвистикой. Приложения математической Л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно-контактная схема в следующем смысле моделирует некоторую формулу  классического исчисления высказываний. Если схема управляется n реле, то столько же различных пропозициональных переменных содержит , и если обозначить через i суждение «Реле номер i сработало», то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений i вместо соответствующих логических переменных в . Построение такой моделируемой формулы, описывающей «условия работы» схемы, оказывается особенно простым для т. н. П-схем, получаемых из элементарных одноконтактных цепей путём параллельных и последовательных соединений. Это связано с тем, что параллельные и последовательные соединения цепей моделируют соответственно дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путём параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь Ц1 или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам современной техники. Это же применение обусловило постановку и частичное решение многих новых и трудных проблем математической Л., к числу которых в первую очередь относится т. н. проблема минимизации, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле.

  Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в современных автоматах. Управляющие схемы иных типов, в частности схемы из электронных ламп или полупроводниковых элементов, имеющие ещё большее практическое значение, также могут быть разрабатываемы с помощью математической Л., которая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык математической Л. оказался также применимым в теории программирования, создаваемой в связи с развитием машинной математики. Наконец, созданный математической Л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математическими методами.

  А. А. Марков.

  Научные учреждения и издания. Преподавание и исследовательская работа по Л. являются неотъемлемой частью научной и культурной жизни большинства стран мира. В СССР научно-исследовательская работа в области Л. ведётся в основном в научно-исследовательских центрах Москвы, Ленинграда, Новосибирска, Киева, Кишинева, Риги, Вильнюса, Тбилиси, Еревана и др. городов отделениями математических институтов АН СССР и союзных республик, институтами философии, кафедрами Л. университетов и некоторых др. вузов. Публикации работ по Л. в СССР осуществляются: в непериодических изданиях в форме тематических сборников и монографий (в частности, начиная с 1959 в серии «Математическая логика и основания математики»), в непериодических изданиях «Трудов Математического института им. В. А. Стеклова АН СССР» (с 1931), в сборниках «Алгебра и логика» (Новосибирск, с 1962), в «Записках» научных семинаров по Л., в математических и философских журналах. В реферативном журнале «Математика» и в реферативных журналах института научной информации по общественным наукам АН СССР систематически освещаются работы советских и зарубежных авторов по Л. Из специальных зарубежных изданий, освещающих проблематику Л., наиболее известны: международная монографическая серия «Studies in Logic...» (Amst., с 1965) и журналы: «The Journal of Symbolic Logic» (Providence, с 1936); «Zeitschrift für mathematische Logik und Grundlagen der Mathematik» (В., с 1955); «Archiv für mathematische Logik und Grundlagenforschung» (Stuttg., с 1950); «Logique et analyse» (Louvain, с 1958); «Journal of philosophical logic» (Dordrecht, с 1972); «International logic review» (Bologna, с 1970); «Studia Logica» (Warsz., с 1953); «Notre Dame Journal of formal Logic» (Notre Dame, с 1960).

  Основную организационную работу, связанную с обменом научной информацией в области Л., осуществляет пользующаяся поддержкой ООН Ассоциация символической логики. Ассоциация организует международные конгрессы по Л., методологии и философии науки. Первый такой конгресс состоялся в 1960 в Станфорде (США), второй — в 1964 в Иерусалиме, третий — в 1967 в Амстердаме, четвёртый — в 1971 в Бухаресте.

  З. А. Кузичева, М. М. Новосёлов.

  Лит.: Основные классические работы. Аристотель, Аналитики первая и: вторая, пер. с греч., М., 1952; Leibniz G. W., Fragmente zur Logik, В., 1960; Кант И., Логика, пер. с нем., П., 1915; Милль Дж. С., Система логики силлогистической и индуктивной, пер. с англ., 2 изд., М., 1914; De Morgan A., Formal logic or the calculus of inference, necessary and probable, L., 1847 (перепечатка, L., 1926); Boole G., The mathematical analysis of logic, being an essay toward a calculus of deductive reasoning, L. — Camb., 1847 (перепечатка, N. Y., 1965); Schröder Е., Der Operationskreis des Logikkalkuls, Lpz., 1877; Frege G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle, 1879; Джевонс С., Основы науки, Трактат о логике и научном методе, пер. с англ., СПБ, 1881; Порецкий П. С., О способах решения логических равенств и об обратном способе математической логики, Казань, 1884; Whitehead A. N., Russell B., Principia mathematica, 2 ed., v. 1—3, Camb., 1925—27.

  История. Владиславлев М., Логика, СПБ, 1872 (см. «Приложение»); Троицкий М., Учебник логики с подробным указанием на историю и современное состояние этой науки в России и в других странах, т. 1—3, М., 1885—88; Яновская С. А., Основания математики и математическая логика, в кн.: Математика в СССР за тридцать лет, М. — Л., 1948; её же, Математическая логика и основания математики, в кн.: Математика в СССР за сорок лет, т. 1, М., 1959; Попов П. С., История логики нового времени, М., 1960; Котарбиньский Т., Лекции по истории логики, Избр. произв., пер. с польск., М., 1963, с. 353—606; Стяжкин Н. И., Формирование математической логики, М., 1967; Prantl К., Geschichte der Logik im Abendlande, Bd 1—4, Lpz., 1855—70; Bochenski I. М., Formale Logik, Münch., 1956; Minio Paluello L., Twelfth century logic. Texts and Studies, v. 1—2, Roma, 1956—58; Scholz Н., Abriss der Geschichte der Logik, Freiburg — Münch., 1959; Lewis C. I., A survey of symbolic logic, N. Y., 1960; lørgensen J., A treatise of formal logic: Its evolution and main branches with its relation to mathematics and philosophy, v. 1—3, N. Y., 1962; Kneale W., Kneale М., The development of logic, 2 ed., Oxf., 1964; Dumitriu A., Istoria logicii, Buc., 1969; Blanché R., La logique et son histoire. D'Aristote a Russell, P., 1971; Berka K., Kreiser L., Logik — Texte. Kommentierte Auswahl zur Geschichte der modernen Logik, B., 1971.

  Учебные курсы. Гильберт Д., Аккерман В., Основы теоретической логики, пер. с нем., М., 1947; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Новиков П. С., Элементы математической логики, М., 1959; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960; Гудстейн Р. Л., Математическая логика, пер. с англ., М., 1961; Гжегорчик А., Популярная логика. Общедоступный очерк логики предложений, пер. с польск., М., 1965; Мендельсон Э., Введение в математическую логику, пер. с англ., М., 1971; Марков А. А., О логике конструктивной математики, М., 1972.

18
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело