Выбери любимый жанр

Большая Советская Энциклопедия (ЛИ) - Большая Советская Энциклопедия "БСЭ" - Страница 84


Изменить размер шрифта:

84

  F(x, y) = 0;

  в пространстве — двумя уравнениями

  F(x, у, z) = 0, G(x, y, z) = 0.

  Ограничиваясь случаем плоскости, укажем лишь, как строится понятие алгебраической Л. (кривой) — Л., определяемой уравнением

  F(x, y) = 0,

  где F(x, у) —целая алгебраическая функция, т. е. многочлен како-либо степени n ³ 1. В этом случае считают, что два многочлена F1(x, у) и F2(x, у) определяют одну и ту же алгебраическую Л. в том и только в том случае, когда существует такая постоянная с ¹ 0, что выполняется тождественно соотношение

  F1(x, y) = cF2(x, у).

  Таким образом, все многочлены, определяющие одну и ту же Л., имеют одну и ту же степень n, называемую порядком соответствующей Л. Например, в аналитической геометрии принято считать, что уравнение

  (х - у)2 = 0

  определяет Л. второго порядка, а именно, дважды взятую прямую х — у = 0.

  В связи с последним примером необходимо заметить, однако, что часто целесообразно ограничиваться рассмотрением неприводимых алгебраических Л., т. е. таких Л., для которых многочлен не допускает представления F = GH, где G и Н — отличные от постоянных многочлены. Далее, в пункте 4, имеется в виду только этот случай.

  Говорят, что точка (x, y) кривой F(x, у) = 0 имеет кратность m, если разложение F(x, у) по степеням x = х — x, h = у — y начинается с членов степени m (по совокупности переменных x и h). В случае m = 2, т. е. в случае двойной точки

  F(x, у) = а11(х — x)2 + 2а12(х — x) (у — y) + a22(y — y)2 + ...,

  где многоточие означает, что далее следуют члены высших порядков. При помощи дискриминанта

  d = a11a22 — а122

  можно определить тип двойной точки (см. Особые точки).

  4) Часто, особенно при изучении алгебраической Л., целесообразно стать на точку зрения комплексной проективной геометрии, т. е. рассматривать, наряду с точками евклидовой действительной плоскости (или пространства), точки бесконечно удалённые и мнимые. Только при таком подходе (и надлежащем учёте кратности пересечения) становится верным, например, утверждение, что две Л. порядков n и m пересекаются в mn точках. В случае m = 1 это приводит к возможности определить порядок Л. как число n точек её пересечения с прямой.

  С проективной точки зрения естественно задавать Л. на плоскости однородным уравнением

  F(x1, x2, x3) = 0

  между однородными координатами x1, x2, x3 её точек. В силу принципа двойственности с этим заданием равноправно задание Л. уравнением

  F(x1, x2, x3) = 0,

  связывающим однородные координаты прямых, касающихся Л. Таким образом, наряду с порядком Л. (степенью уравнения F = 0) естественно возникает понятие класса Л. — степени уравнения F = 0. Класс алгебраических Л. можно также определить как число касательных, которые можно провести к Л. из произвольной точки. О параметрическом представлении Л. см. также Уникурсальные кривые.

  5) Рассмотренные выше (в пунктах 2—4) уточнения и обобщения понятия Л. существенно связаны с соответствующим алгебраическим и аналитическим аппаратом. В отличие от этого, современная топология выдвинула задачу уточнения представления о Л. как о множестве точек, независимо от алгебраического или аналитического способов задания этого множества.

  Если исходить из параметрического задания Л. в виде непрерывной функции P = j (t), где t пробегает отрезок а £ t £ b, но интересоваться только полученным множеством точек без учёта порядка их следования, то приходят к понятию Л., сформулированному в 80-x гг. 19 в. К. Жорданом (см. Жордана кривая). Оказывается, что таким непрерывным образом отрезка может быть любой локально связный континуум, в частности квадрат, треугольник, куб и т. п. (см. Пеано кривая). Поэтому теперь обычно предпочитают говорить не о Л. в смысле Жордана, а о локально связных, или жордановых, континуумах. Взаимно однозначный непрерывный образ отрезка называют простой дугой, или жордановой дугой. Взаимно однозначный непрерывный образ окружности называют простой замкнутой Л. Простые дуги и простые замкнутые Л. не исчерпывают, однако, точечных множеств, заслуживающих наименования Л.

  Избегая и чрезмерной общности, и чрезмерного сужения понятия Л., в современной топологии пользуются понятием Л., введённым в 1921 П. С. Урысоном, который определяет Л. (кривую) как произвольный континуум размерности единица. Континуум имеет размерность единица, если при любом e > 0 он может быть представлен в виде суммы конечного числа замкнутых множеств диаметра, меньшего e, обладающих тем свойством, что никакие три из этих замкнутых множеств не имеют общей точки (см. также Размерность в геометрии). Континуум, лежащий на плоскости, будет Л. в смысле Урысона тогда и только тогда, когда он не содержит внутренних точек. Этим свойством характеризовал ранее (70-е гг. 19 в.) Л., лежащие на плоскости, Г. Кантор. Хотя определение Кантора применимо только к Л., лежащим на плоскости, иногда и общие Л. в смысле Урысона называют «канторовыми кривыми».

  Л. Н. Колмогоров.

  6) Ещё математики древности изучали линии второго порядка(эллипс, гиперболу и параболу). Ими же был рассмотрен ряд отдельных замечательных алгебраических Л. более высокого порядка, а также некоторые трансцендентные (неалгебраические) Л. Систематическое изучение Л. и их классификация стали возможными с созданием аналитической геометрии (Р. Декарт).

  Из Л. третьего порядка наиболее известны:

  Декартов лист (см. рис. «Алгебраические кривые третьего порядка», № 1). уравнение в прямоугольных координатах: x3 + y3 — 3аху = 0. Впервые кривая определяется в письме Р. Декарта к П. Ферма в 1638. Полная форма кривой с наличием асимптоты, проходящей через точки ( —а, 0) и (0, —а), была определена позднее (1692) Х. Гюйгенсом и И. Бернулли. Название «декартов лист» установилось в начале 18 в.

  Локон Аньези (см. рис. «Алгебраические кривые третьего порядка», № 2). Пусть имеется круг с диаметром OC = -а и отрезок BDM, построенный так, что ОВ : BD = OC : ВМ; геометрическое место точек М представляет собой локон Аньези (или верзиеру). уравнение в прямоугольных координатах: у = a3/(a2 + x2). Исследование этой Л. связано с именем итальянской женщины-математика Марии Аньези (1748).

  Кубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 3). уравнение в прямоугольных координатах: у = x3.

  Полукубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 4), парабола Нейля. уравнение в прямоугольных координатах: у = -сх3/2. Названа по имени английского математика У. Нейля (1657), нашедшего длину её дуги.

  Строфоида (от греч. stróphos — кручёная лента и éidos — вид) (см. рис. «Алгебраические кривые третьего порядка», № 5). Пусть имеется неподвижная прямая АВ и точка С вне её на расстоянии CO = а; вокруг С вращается прямая, пересекающая АВ в переменной точке N. Если от точки N отложить по обе стороны прямой АВ отрезки NM = NM' = NO, то геометрическое место точек М и М' для всех положений вращающегося луча CN и есть строфоида. Уравнение в прямоугольных координатах:

Большая Советская Энциклопедия (ЛИ) - i-images-114179523.png
; в полярных координатах: r = —a cos 2j/cosj. Впервые строфоиду исследовал Э. Торричелли(1645), название было введено в середине 19 в.

84
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело