Выбери любимый жанр

Большая Советская Энциклопедия (ЛА) - Большая Советская Энциклопедия "БСЭ" - Страница 31


Изменить размер шрифта:

31

  Трудности выращивания больших монокристаллов или варки больших образцов однородного и прозрачного стекла привели к созданию жидкостных Л., в которых примеси атомов редкоземельных элементов вводятся не в кристаллы, а в жидкость. Однако жидкостные Л. имеют недостатки и поэтому применяются не столь широко, как твердотельные Л. (см. Жидкостный лазер).

  Генерация коротких и сверхкоротких импульсов. Если для накачки твердотельного Л. используется лампа-вспышка с длительностью импульса Dtn ~ 10-3сек, то импульс генерации длится примерно такое же время. Небольшое запаздывание начала генерации по сравнению с лампой-вспышкой обусловлено тем, что для развития генерации необходимо превысить некоторое пороговое значение инверсии населённостей, после чего усиление за один проход рабочего объёма начинает превышать суммарные потери энергии за счёт отражения луча от зеркал резонатора, паразитного поглощения и рассеяния света. При достаточно больших мощностях накачки порог генерации достигается за время t << tн. Такой режим работы Л., когда длительность лазерного импульса Dtл » Dtн, наз. режимом свободной генерации. Для ряда применений важно сократить длительность импульса Dtл, т.к. при заданной энергии импульса пиковая мощность Л. возрастает с уменьшением его длительности. С этой целью разработан метод модулированной добротности (модулируется добротность резонатора), состоящий в следующем: предварительно производят оптическую накачку, искусственно препятствуя возникновению генерации. Это осуществляют, например, помещая внутри резонатора оптический затвор. При закрытом затворе генерация невозможна, и энергия накапливается в резонаторе в виде нарастающего количества возбуждённых атомов. Если затем быстро открыть затвор, то вся запасённая энергия возбуждения, или большая её часть высвечивается в виде короткого светового импульса. Длительность такого лазерного импульса Dtл определяется или скоростью открывания затвора или, если эта скорость достаточно велика, временем установления электромагнитного поля в резонаторе.

  Применяются различные типы оптических затворов: механически вращающиеся зеркала и призмы, Керра ячейки (см. Керра эффект) и Поккельса (см. Поккельса эффект), управляемые электрическим сигналом, и т.п. С помощью оптических затворов обычно получают импульсы длительностью Dtл ~ 10-7 — 10-8сек. Полная энергия импульса в режиме модулированной добротности оказывается меньшей, нежели в режиме свободной генерации. Тем не менее, выигрыш в мощности за счёт уменьшения Dtл достигает нескольких порядков.

  Новые возможности сокращения длительности импульса Л. открыло применение в качестве затворов просветляющихся фильтров. Таким фильтром обычно служит слабый раствор красителя, причём концентрация поглощающей компоненты подбирается таким образом, чтобы при достаточно большой интенсивности света достигалось насыщение (см. Насыщения эффект), при этом раствор становится прозрачным (просветляется). Введение в резонатор такого фильтра повышает порог генерации: при включении накачки в рабочем объёме начинают накапливаться возбуждённые частицы; растет также и интенсивность их спонтанного излучения. Пока эта интенсивность (с учётом усиления за один проход рабочего объёма) меньше просветляющей, поглощение в фильтре препятствует развитию генерации. Но как только достигается уровень просветления, затвор автоматически выключается, и уже ничто не препятствует развитию генерации. Применение просветляющихся фильтров позволило получить гигантские импульсы света длительностью до 10-9 сек, с энергией ~ десятков дж, что соответствует мощности ~ 1010вт.

  Если обеспечивается одномодовой режим генерации, то наблюдается единый, не имеющий структуры гигантский импульс. В остальных случаях гигантские импульсы имеют сложную структуру. Например, для неодимового Л. они представляют собой последовательность значительно более коротких импульсов длительностями ~ 10-11—10-12сек. Происхождение этой структуры объясняется следующим образом: спонтанное излучение атомов Nd в стекле характеризуется довольно широким спектром Dn ~ 1012гц (Dl ~ 100

Большая Советская Энциклопедия (ЛА) - i-images-182515583.png
), т. е. представляет собой сумму большого числа монохроматических колебаний с частотами в интервале Dn и произвольными фазами. Поэтому интенсивность излучения изменяется во времени случайным образом (рис. 8), причём характерный временной масштаб всей этой картины, т. е. длительность типичных всплесков интенсивности, имеет порядок величины
Большая Советская Энциклопедия (ЛА) - i-images-155112985.png
. Оказалось, что с помощью введения в резонатор нелинейного элемента, каким является просветляющийся фильтр, можно сфазировать моды лазера. В идеальном случае, когда сфазированы все моды, излучение лазера приобретает вид регулярной последовательности импульсов с длительностью
Большая Советская Энциклопедия (ЛА) - i-images-143376007.png
. Интервалы между импульсами определяются длиной резонатора, т. е. равны периоду 2L/c. Подобный метод получения сверхкоротких и исключительно мощных импульсов получил название метода самосинхронизации мод. Практически сфазировать все моды лазера довольно трудно. Чаще всего удаётся сфазировать лишь часть из них. При этом картина формирования сверхкоротких импульсов усложняется. Реальный процесс формирования сверхкоротких импульсов с помощью просветляющегося фильтра протекает примерно следующим образом: на начальной стадии развития генерации излучение представляет собой случайный процесс. Если просветляющая интенсивность соответствует горизонтальной прямой (рис. 8), то фильтр будет выключаться теми пучками, интенсивность которых больше просветляющей. После прохождения каждого из таких пучков фильтр снова начинает поглощать. Естественно, что генерация может развиваться таким образом лишь в случае достаточно малой инерционности фильтра. Иначе после каждого сильного пика фильтр пропустит ещё несколько последующих более слабых пиков.

  Просветляющийся фильтр можно подобрать так, что он будет выключаться только самыми сильными всплесками интенсивности. Это позволяет, используя некоторые дополнительные устройства, выделять отдельные сверхкороткие импульсы генерации (рис. 9). Энергия каждого из таких импульсов, как правило, невелика, однако её можно значительно увеличить, если усилить первоначальный импульс с помощью второго Л. или нескольких Л., работающих в режиме усиления и отличающихся от Л. в режиме генерации отсутствием зеркал или каких-либо др. отражающих элементов, образующих резонатор. Все возможные причины отражений устраняются выбором соответствующей конструкции. Техника формирования сверхкоротких импульсов и их последующее усиление позволяют получить импульсы генерации длительностью ~ 10-11 — 10-12сек и пиковой мощностью ~ 1012 — 1013вт.

  Можно ожидать от Л. на неодимовом стекле дальнейшего сокращения импульсов, по крайней мере в несколько раз. Однако измерение длительности столь малых временных интервалов затруднительно. Мощность ограничивается прочностью самих лазерных материалов и достигает 1012—1013вт. Это значительно превышает мощности крупнейших современных электростанций. Развитие методов формирования коротких и сверхкоротких импульсов открыло новый класс оптических явлений, таких, как самофокусировка света, вынужденное рассеяние света, параметрическое преобразование частоты света, смешение частот и т.п. Все эти явления и их применения составляют содержание нелинейной оптики.

31
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело