Выбери любимый жанр

Большая Советская Энциклопедия (ДУ) - Большая Советская Энциклопедия "БСЭ" - Страница 16


Изменить размер шрифта:

16

  Лит.: Карякин Н. А., Угольная дуга высокой интенсивности, М.—Л., 1948; Ласло Т. С., Оптические высокотемпературные печи, пер. с англ., М., 1968; Оптические печи, М., 1969; Finkelnburg W., Hochstrornkohlebogen, В., 1948.

  Г. С. Сарычев.

Дуговая электросварка

Дугова'я электросва'рка, см. Электросварка.

Дуговой генератор

Дугово'й генера'тор, устройство, преобразующее энергию постоянного тока в электромагнитные колебания высокой частоты при помощи дугового разряда через зазор, подключённый параллельно цепи, содержащей конденсатор и катушку индуктивности (рис.). В колебательном контуре, состоящем из указанных конденсатора и катушки индуктивности и воздушного промежутка, возбуждаются и поддерживаются колебания. Манипуляция колебаний для посылки телеграфных сигналов производилась закорачиванием витков катушки индуктивности колебательного контура. Вследствие серьёзных недостатков (неустойчивости частоты генерируемых колебаний и др.) Д. г. был заменён машинными генераторами высокой частоты и затем ламповыми генераторами. См. Генератор повышенной частоты, и Генерирование электрических колебаний.

  Ю. В. Любченко.

Большая Советская Энциклопедия (ДУ) - i008-pictures-001-296292781.jpg

Схема дугового генератора: Др — дроссель, препятствующий проникновению токов высокой частоты в источник электрического питания с напряжением Е; А — воздушный промежуток между электродами, в котором возникает дуговой разряд; R — сопротивление потерь электрической мощности в колебательном контуре; L — катушка индуктивности; С — конденсатор; RП — резистор, ограничивающий электрический ток источника питания.

Дуговой разряд

Дугово'й разря'д, один из типов стационарного электрического разряда в газах. Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808—09 Г. Дэви. Светящийся токовый канал этого разряда был дугообразно изогнут, что и обусловило название Д. р.

  Формированию Д. р. предшествует короткий нестационарный процесс в пространстве между электродами — разрядном промежутке. Длительность этого процесса (время установления Д. р.) обычно ~ 10-6—10-4сек в зависимости от давления и рода газа, длины разрядного промежутка, состояния поверхностей электродов и т.д. Д. р. получают, ионизуя газ в разрядном промежутке (например, с помощью вспомогательного, так называемого поджигающего электрода). В др. случаях для получения Д. р. разогревают один или оба электрода до высокой температуры либо раздвигают сомкнутые на короткое время электроды. Д. р. может также возникнуть в результате пробоя электрического разрядного промежутка при кратковременном резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то нестационарным процессом, предшествующим Д. р., является искровой разряд.

  Типичные параметры Д. р. Для Д. р. характерно чрезвычайное разнообразие принимаемых им форм: он может возникать практически при любом давлении газа — от менее 10-5мм рт. ст. до сотен атм; разность потенциалов между электродами Д. р. может принимать значения от нескольких вольт до нескольких тысяч вольт (высоковольтный Д. р.). Д. р. может протекать не только при постоянном, но и при переменном напряжении между электродами. Однако полупериод переменного напряжения обычно намного больше времени установления Д. р., что позволяет рассматривать каждый электрод в течение одного полупериода как катод, а в следующем полупериоде — как анод. Отличительными особенностями всех форм Д. р. (тесно связанными с характером эмиссии электронов из катода в этом типе разряда) являются малая величина катодного падения и высокая плотность тока на катоде. Катодное падение в Д. р. обычно порядка ионизационного потенциала рабочего газа или ещё ниже (1—10 в); плотность тока на катоде составляет 102—107а/см2. При столь большой плотности тока сила тока в Д. р. обычно также велика — порядка 1—10 a и выше, а в некоторых формах Д. р. достигает многих сотен и тысяч ампер. Однако существуют и Д. р. с малой силой тока (например, Д. р. с ртутным катодом может гореть при токах 0,1 a и ниже).

  Электронная эмиссия в Д. р. Коренное отличие Д. р. от др. типов стационарного электрического разряда в газе заключается в характере элементарных процессов, происходящих на катоде и в прикатодной области. Если в тлеющем разряде и отрицательном коронном разряде имеет место вторичная электронная эмиссия, то в Д. р. электроны вылетают из катода в процессах термоэлектронной эмиссии и автоэлектронной эмиссии (называется также туннельной эмиссией). Когда в Д. р. происходит только первый из этих процессов, его называют термоэмиссионным. Интенсивность термоэмиссии определяется температурой катода; поэтому для существования термоэмиссионного Д. р. необходимо, чтобы катод или отдельные его участки были разогреты до высокой температуры. Такой разогрев осуществляют, подключая катод к вспомогательному источнику энергии (Д. р. с внешним накалом; Д. р. с искусственным подогревом). Термоэмиссионный Д. р. возникает и в том случае, когда температуру катода в достаточной степени повышают удары положительных ионов, образующихся в разрядном промежутке и ускоряемых электрическим полем по направлению к катоду. Однако чаще при Д. р. без искусственного подогрева интенсивность термоэлектронной эмиссии слишком мала для поддержания разряда, и значительную роль играет процесс автоэлектронной эмиссии. Сочетание этих двух видов эмиссии носит название термоавтоэмиссии.

  Автоэлектронная эмиссия из катода требует существования у его поверхности сильного электрического поля. Такое поле в Д. р. создаётся объёмным зарядом положительных ионов, удалённым от катода на расстояние порядка длины свободного пробега этих ионов (10-6—10-4см). Расчёты показывают, что автоэлектронная эмиссия не может самостоятельно поддерживать Д. р. и всегда в той или иной степени сопровождается термоэлектронной эмиссией. Вследствие сложности исследования процессов в тонком прикатодном слое при высоких плотностях тока экспериментальных данных о роли автоэлектронной эмиссии в Д. р. накоплено ещё недостаточно. Теоретический же анализ пока не может удовлетворительно объяснить все явления, наблюдаемые в различных формах Д. р.

  Связь между характеристиками Д. р. и процессами эмиссии. Слой, в котором возникает электрическое поле, вызывающее автоэлектронную эмиссию, настолько тонок, что не создаёт большого падения разности потенциалов у катода. Однако для того чтобы это поле было достаточно сильным, плотность объёмного заряда ионов у катода, а следовательно, и плотность ионного тока должны быть велики. Термоэлектронная эмиссия также может происходить при малой кинетической энергии ионов у катода (т. е. при малом катодном падении), но требует в этих условиях высокой плотности тока — катод нагревается тем сильнее, чем больше число бомбардирующих его ионов. Т. о., отличительные черты Д. р. (малое катодное падение и высокая плотность тока) обусловлены характером прикатодных процессов.

  Плазма Д. р. Разрядный промежуток Д. р. заполняет плазма, состоящая из электронов, ионов, нейтральных и возбуждённых атомов и молекул рабочего газа и вещества электродов. Средние энергии частиц различного сорта в плазме Д. р. могут быть разными. Поэтому, говоря о температуре Д. р., различают ионную температуру, электронную температуру и температуру нейтральной компоненты. В случае равенства этих температур плазму называют изотермической.

16
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело