100 великих научных открытий - Самин Дмитрий К. - Страница 50
- Предыдущая
- 50/137
- Следующая
«Если у водорода только один электрон, каким образом можно объяснить тот факт, что он излучает несколько различных по длине волны световых лучей?» — думал Бор. Он вновь возвратился к теории Никольсона. Блестящее согласие между вычисленными и наблюдаемыми значениями отношений длин волн спектров является сильным аргументом в пользу этой теории. Однако Никольсон отождествляет частоту излучения с частотой колебаний механической системы. Но системы, в которых частота является функцией энергии, не могут испускать конечного количества однородного излучения, так как при излучении частота их будет меняться. Кроме того, системы, рассчитанные Николь-соном, будут неустойчивы при некоторых формах колебаний. И, наконец, теория Никольсона не может объяснить сериальные законы Баль-мера и Ридберга.
— Хансен, мне кажется, ответ есть! — сказал Бор. — С помощью выведенного мною условия устойчивости орбиты электрона в атоме можно рассчитать скорость движения электрона по орбите, ее радиус и полную энергию электрона на любой орбите. Причем все формулы содержат один и тот же множитель, так называемое квантовое число, которое принимает те же целочисленные значения 1, 2, 3, 4 и т. д. Каждому из этих чисел соответствует определенный радиус орбиты… — Бор немного помолчал и продолжал. — Ну конечно же, теперь все ясно. Атом может существовать, не излучая энергии, только в определенных стационарных состояниях, каждое из которых характеризуется своим значением энергии. Если электрон переходит с одной орбиты на другую, атом либо испускает, либо поглощает энергию в виде особых порций — квантов!..
— Так вот в чем секрет! — воскликнул Хансен. — Значит, спектр атома отражает его строение!
— Теперь все становится на свои места. Ясно, почему атом водорода испускает несколько видов лучей. Если пронумеруем орбиты, начиная с самой близкой к ядру, то можно сказать, что электрон перескакивает с четвертой на первую, с третьей на первую, с третьей на вторую орбиту и т. д. Каждый перескок сопровождается излучением света соответствующей длины волны. Очень надеюсь, что мне удастся найти и количественную зависимость…
В 1913 году Нильс Бор опубликовал результаты длительных размышлений и расчетов, важнейшие из которых стали с тех пор именоваться постулатами Бора: в атоме всегда существует большое число устойчивых и строго определенных орбит, по которым электрон может мчаться бесконечно долго, ибо все силы, действующие на него, оказываются уравновешенными; электрон может переходить в атоме только с одной устойчивой орбиты на другую, столь же устойчивую. Если при таком переходе электрон удаляется от ядра, то необходимо сообщить ему извне некоторое количество энергии, равное разнице в энергетическом запасе электрона на верхней и нижней орбите. Если электрон приближается к ядру, то лишнюю энергию он «сбрасывает» в виде излучения…
Вероятно, постулаты Бора заняли бы скромное место среди ряда интересных объяснений новых физических фактов, добытых Резерфордом, если бы не одно немаловажное обстоятельство. Бор с помощью найденных им соотношений сумел рассчитать радиусы «разрешенных» орбит для электрона в атоме водорода. Зная разницу между энергиями электрона на этих орбитах, можно было построить кривую, описывающую спектр излучения водорода в различных возбужденных состояниях и определить, волны какой длины должен особенно охотно испускать атом водорода, если подводить к нему извне избыточную энергию, например, с помощью яркого света ртутной лампы. Эта теоретическая кривая полностью совпала со спектром излучения возбужденных атомов водорода, измеренным швейцарским ученым Я. Бальмером еще в 1885 году!
Планетарная модель атома получила могучее подкрепление, у Резерфорда и Бора появлялось все больше и больше сторонников.
КВАНТОВАЯ МЕХАНИКА
Когда прошел восторг первых успехов теории Бора, все вдруг осознали простую истину: схема Бора противоречива. От такого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули.
Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который «произошел» от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из подобного порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.
Выходило, что движение электрона в атоме подчиняется каким-то другим законам — законам квантовой механики. Квантовая механика — это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. Гейзенберг — первый из тех, кому выпало счастье эту науку создавать.
Вернер Карл Гейзенберг (1901–1976) родился в немецком городе Вюрцбурге. В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Геттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что ученым нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определенном положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.
Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна. Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…
В июне 1925 года заболевший Гейзенберг уехал отдохнуть на остров Гельголанд в Балтийском море. Отдохнуть ему не удалось — там он вдруг понял неожиданную истину: нельзя представлять себе движение электрона в атоме как движение маленького шарика по траектории. Нельзя, потому что электрон не шарик, а нечто более сложное, и проследить движение этого «нечто» столь же просто, как движение бильярдного шара, нельзя.
Л.Пономарев в своей книге пишет: «Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. А из опытов следовало, что атом устойчив, состоит из ядра и электронов и может испускать лучи, если его вывести из состояния равновесия. Эти лучи имеют строго определенную длину волны и, если верить Бору, возникают при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать „в полете“ между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает „между“ стационарными состояниями, такого свойства у него просто нет!
А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда».
До того времени физики пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел, отмечающих положение электрона в определенные моменты времени. Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой есть набор дискретных чисел, значения которых зависят от номеров начального и конечного состояний электрона.
- Предыдущая
- 50/137
- Следующая